Citation: LI Tao, CHE Xiao-li, YUN Yi-feng, TAO Zhi-chao, ZHAO Chun-li, YANG Yong, LI Yong-wang. Study of the relationship between the acidity of amorphous silica-alumina supports and diesel selectivity in Fischer-Tropsch wax hydrocracking[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(5): 589-595. shu

Study of the relationship between the acidity of amorphous silica-alumina supports and diesel selectivity in Fischer-Tropsch wax hydrocracking

  • Corresponding author: YANG Yong, yyong@sxicc.ac.cn
  • Received Date: 13 February 2017
    Revised Date: 25 March 2017

    Fund Project: the Strategic Priority Research Program of the Chinese Academy of Sciences XDA07060200

Figures(7)

  • Three amorphous silica-alumina supports with similar textural properties and different amounts of acidity were successfully synthesized through ammonium exchange processing and their structures, acidity properties and the coordination of Si and Al in the as-synthesized supports were characterized using XRD, N2 adsorption-desorption, NH3-TPD, Py-FTIR and NMR. Amorphous silica-alumina was impregnated into a solution of H12N4PtCl2·XH2O to obtain hydrocracking catalysts. The relationship between acidic properties of supports and catalytic performance was studied by hydrocracking of Fischer-Tropsch (F-T) wax to diesel in a continuous-flow type fixed-bed reactor as a model reaction. The results illustrated that the diesel selectivity was mainly related to Brønsted acid properties of the supports while Lewis acid showed little correlation. The amount of strong Brønsted acid was reversely related to the selectivity of diesel:the smaller the amount, the higher the selectivity. The as-synthesized Pt/B-1 catalyst showed high selectivity of 87.12% to diesel at the conversion of F-T wax of about 62.52%, under the reaction conditions of 370℃, 7.0 MPa, LHSV of 1.0 h-1 and a hydrogen-to-wax ratio of 1 000:1. Pt/B-1 had better catalytic performance than Pt/ASA prepared by commercial amorphous silica-alumina (ASA).
  • 加载中
    1. [1]

      LI Da-dong. Hydrotreating Technology and Engineedng[M]. Beijing: China Petrochemical Press, 2004: 170-200.

    2. [2]

      MAXWEL L. Zeolte catalysis in hydroprocessing technology[J]. Catal Today, 1987,1(4):389-417.  

    3. [3]

      WARD J W. Hydrocracking processes and catalysts[J]. Fuel Process Technol, 1993,35(1/2):55-85.  

    4. [4]

      LECKEL D. Hydrocracking of iron-catalyzed fischer-tropsch waxes[J]. Energy Fuels, 2005,19(5):1795-1803. doi: 10.1021/ef050085v

    5. [5]

      YAN Peng-hui, TAO Zhi-chao, HAO Kun, WANG Yu-dan, YANG Yong, LI Yong-wang. Effect of impregnation methods on nickel-tungsten catalysts and its performance on hydrocracking of Fischer-Tropsch wax[J]. J Fuel Chem Technol, 2013,41(6):691-697.  

    6. [6]

      GAMBA S, PELLEGRINI L A, CALEMMA V, GAMBARO C. Liquid fuels from Fischer-Tropsch wax hydrocracking: Isomer distribution[J]. Catal Today, 2010,156:58-64. doi: 10.1016/j.cattod.2010.01.009

    7. [7]

      FLINN R A, LARSON O A, BEUTHER H. The mechanism of catalytic hydrocracking[J]. Ind Eng Chem, 1960,52(2):153-156. doi: 10.1021/ie50602a034

    8. [8]

      COONRADT H L, GARWOOD W E. Mechanism of hydrocracking[J]. Ind Eng Chem, 1964,3(1):38-45. doi: 10.1021/i260009a010

    9. [9]

      WANG Y D, TAO Z C, WU B S, CHEN H M, XU J, YANG Y, LI Y W. Shape-controlled synthesis of Pt particles and their catalytic performances in the n-hexadecane hydroconversion[J]. Catal Today, 2016,259:331-339. doi: 10.1016/j.cattod.2015.06.017

    10. [10]

      WANG Y D, TAO Z C, WU B S, XU J, HUO C F, LI K, CHEN H M, YANG Y, LI Y W. Effect of metal precursors on the performance of Pt/ZSM-22 catalysts for n-hexadecane hydroisomerization[J]. J Catal, 2015,322:1-13. doi: 10.1016/j.jcat.2014.11.004

    11. [11]

      CORMA A, GRANDE M S, GONZALEZ-ALFARO V, ORCHILLES A V. Cracking Activity and hydrothermal stability of MCM-41 and its comparison with amorphous silica-alumina and a USY Zeolite[J]. J Catal, 1996,159:375-382. doi: 10.1006/jcat.1996.0100

    12. [12]

      JIANG J, YANG C, LU Z J, DING J, LI T, LU Y, CAO F H. Characterization and application of a Pt/ZSM-5/SSMF catalyst for hydrocracking of paraffin wax[J]. Catal Commun, 2015,60:1-4. doi: 10.1016/j.catcom.2014.10.025

    13. [13]

      CUI Q Y, ZHOU Y S, WEI Q, TAO X J, YU G G, WANG Y, YANG J P. Role of the zeolite crystallite size on hydrocracking of vacuum gas oil over NiW/Y-ASA catalysts[J]. Energy Fuels, 2012,26(8):4664-4670. doi: 10.1021/ef300544c

    14. [14]

      CORMA A, MARTINEZ A, MARTINEZSORIA V, MONTON J B. Hydrocracking of vacuum gasoil on the novel mesoporous MCM-41 aluminosilicate catalyst[J]. J Catal, 1995,153(11):25-31.  

    15. [15]

      DONK S V, JANSSEN A H, BITTER J H, JONG K P D. Generation, characterization, and impact of mesopores in zeolite catalysts[J]. Cat Rev Sci Eng, 2003,45(2):297-319. doi: 10.1081/CR-120023908

    16. [16]

      CORMA A, MARTINEZ A, PERGHER S, PERATELLO S, PEREGO C, BELLUSI G. Hydrocracking-hydroisomerization of n-decane on amorphous silica-alumina with uniform pore diameter[J]. Appl Catal A: Gen, 1997,152(1):107-125. doi: 10.1016/S0926-860X(96)00338-9

    17. [17]

      ALI M.A, TAESUMI T, MASUDA T. Development of heavy oil hydrocracking catalysts using amorphous silica-alumina and zeolites as catalyst supports[J]. Appl Catal A: Gen, 2002,233(1/2):77-90.

    18. [18]

      MENG Qing-lei, LIU Bai-jun, GAI You-dong, HE Lin-lin. Synthesis and hydrocracking performance of Y/ASA comopsite[J]. J Fuel Chem Technol, 2012,40(3):354-358.  

    19. [19]

      LECKEL D. Selectivity effect of oxygenates in hydrocracking of Fischer-Tropsch waxes[J]. Energy Fuels, 2007,21(2):662-667. doi: 10.1021/ef060603h

    20. [20]

      LECKEL D, LIWANGA-EHUMBU M. Diesel-selective hydrocracking of an iron-based Fischer-Tropsch wax fraction (C15-C45) using a MoO3-modified noble metal catalyst[J]. Energy Fuels, 2006,20(6):2330-2336. doi: 10.1021/ef060319q

    21. [21]

      LI B, CALEMMA V, GAMBARO C, BARON G V, DENAYER J F M. Competitive adsorption of C20-C36 linear paraffins on the amorphous microporous silica-alumina ERS-8 in vapor phase and liquid phase[J]. Ind Eng Chem Res, 2010,49(16):7541-7549. doi: 10.1021/ie100728h

    22. [22]

      LIU S Y, REN J, ZHU S J, ZHANG H K, LV E, XU J, LI Y W. Synthesis and characterization of the Fe-substituted ZSM-22 zeolite catalyst with high n-dodecane isomerization performance[J]. J Catal, 2015,330:485-496. doi: 10.1016/j.jcat.2015.07.027

    23. [23]

      ZHANG Xue-jun, WANG Zong-xian, GUO Ai-jun, YUAN Zong-sheng, WANG Fu-cun. Modification of zeolite Y for preparation of the maxinizing middle distillates htdrocracking catalyst[J]. J Fuel Chem Technol, 2008,36(5):606-609.  

    24. [24]

      YU Z W, ZHENG A, WANG Q, CHEN L, XU J, AMOUREUX J P, DENG F. Insights into the dealumination of zeolite HY revealed by sensitivity-enhanced 27Al DQ-MAS NMR spectroscopy at high field[J]. Angew Chem Int Ed Eng, 2010,49(46):8657-61. doi: 10.1002/anie.201004007

    25. [25]

      BOKHOVEN J A, KONINGSBERGER D C, KUNKELER P, BEKKUM H V, KENTGENS A P M. Stepwise dealumination of zeolite Beta at specific T-sites observed with 27Al MAS and 27Al MQ MAS NMR[J]. J Am Chem Soc, 2000,122:12842-12847. doi: 10.1021/ja002689d

    26. [26]

      IKUNO T, CHAIKITTISILP W, LIU Z, IIDA T, YANABA Y, YOSHIKAWA T, KOHARA S, WAKIHARA T, OKUBO T. Structure-directing behaviors of tetraethylammonium cations toward zeolite beta revealed by the evolution of aluminosilicate species formed during the crystallization process[J]. J Am Chem Soc, 2015,137(45):14533-14544. doi: 10.1021/jacs.5b11046

    27. [27]

      LECKEL D. Noble metal wax hydrocracking catalysts supported on high-siliceous alumina[J]. Ind Eng Chem Res, 2007,46(11):3505-3512. doi: 10.1021/ie0700922

    28. [28]

      ZECEVIC J, VANBUTSELE G, DE JONG K P, MARTENS J A. Nanoscale intimacy in bifunctional catalysts for selective conversion of hydrocarbons[J]. Nature, 2015,528(7581):245-252. doi: 10.1038/nature16173

  • 加载中
    1. [1]

      Weihan ZhangMenglu WangAnkang JiaWei DengShuxing Bai . Surface Sulfur Species Influence Hydrogenation Performance of Palladium-Sulfur Nanosheets. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-0. doi: 10.3866/PKU.WHXB202309043

    2. [2]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    3. [3]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    4. [4]

      Zhi Chai Huashan Huang Xukai Shi Yujing Lan Zhentao Yuan Hong Yan . Wittig反应的立体选择性. University Chemistry, 2025, 40(8): 192-201. doi: 10.12461/PKU.DXHX202410046

    5. [5]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    6. [6]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    7. [7]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    8. [8]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    9. [9]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    10. [10]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    11. [11]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    12. [12]

      Shuhong XiangLv YangYingsheng XuGuoxin CaoHongjian Zhou . Selective electrosorption of Cs(Ⅰ) from high-salinity radioactive wastewater using CNT-interspersed potassium zinc ferrocyanide electrodes. Acta Physico-Chimica Sinica, 2025, 41(9): 100097-0. doi: 10.1016/j.actphy.2025.100097

    13. [13]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    14. [14]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    15. [15]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    16. [16]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    17. [17]

      Jun HuangPengfei NieYongchao LuJiayang LiYiwen WangJianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-0. doi: 10.1016/j.actphy.2025.100066

    18. [18]

      Jingkun YuXue YongAng CaoSiyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015

    19. [19]

      Xin FengKexin GuoChunguang JiaBowen LiuSuqin CiJunxiang ChenZhenhai Wen . Hydrogen Generation Coupling with High-Selectivity Electrocatalytic Glycerol Valorization into Formate in an Acid-Alkali Dual-Electrolyte Flow Electrolyzer. Acta Physico-Chimica Sinica, 2024, 40(5): 2303050-0. doi: 10.3866/PKU.WHXB202303050

    20. [20]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

Metrics
  • PDF Downloads(3)
  • Abstract views(1054)
  • HTML views(119)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return