Citation: WANG Dong-sheng, ZHANG Su-ling, WEI Lei, LU Yan-hong, JING Xue-min. Preparation and characterization of hydrolysis component γ-Ga2O3 for hydrogen production by low temperature steam reforming of dimethyl ether in slurry reactor[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(6): 666-672. shu

Preparation and characterization of hydrolysis component γ-Ga2O3 for hydrogen production by low temperature steam reforming of dimethyl ether in slurry reactor

  • Corresponding author: WANG Dong-sheng, wds0701@163.com
  • Received Date: 23 March 2018
    Revised Date: 26 April 2018

    Fund Project: National Natural Science Foundation of China 51502125Science and Technology Planning Project of Hebei Province, China 13214606The project was supported by National Natural Science Foundation of China (51502125), Science and Technology Planning Project of Hebei Province, China (13214606) and Scientific Research Project of Langfang Normal University (LSZB201007)Scientific Research Project of Langfang Normal University LSZB201007

Figures(5)

  • The oxide of gallium was prepared by homogeneous precipitation in organic solvent. The physical structure and surface properties were characterized by XRD, NH3-TPD, TEM and BET. The results reveal that γ-Ga2O3 was obtained after 500 ℃ heat treatment of the precursor of GaOOH. The lattice type of the γ-Ga2O3 is similar to that of γ-Al2O3, which belongs to cubic, cation-deficient spinel structure. The γ-Ga2O3 has a moderate acid center with larger amount of acid content. Most of the γ-Ga2O3 is two-dimensional nanoflakes with thickness of 10 nm and diameter of 100 nm. These nanoflakes are mainly distributed in one direction, and some of them form petal-shaped patterns. The experimental results showed that the conversion rate of dimethyl ether (DME) was about 24% at 270 ℃, which was close to equilibrium conversion. The texture properties of the catalyst had no significant change after the reaction and the specific surface of the catalyst was about 130 m2/g. The composite catalyst composed of the γ-Ga2O3 and Cu-based catalyst was used to DME steam reforming reaction in slurry bed at 270 ℃. The conversion of DME and selectivity of H2 were as high as about 99% and 68%, respectively. The conversion of DME was over 95% after reaction time of 200 h.
  • 加载中
    1. [1]

      FABI V, NICOLI M V D, SPIGLIANTINI G, CORGNATI S P. Insights on pro-environmental behavior towards post-carbon society[J]. Energy Procedia, 2017,134:462-469. doi: 10.1016/j.egypro.2017.09.604

    2. [2]

      ABBASI T, PREMALATHA M, ABBASI S A. The return to renewables:Will it help in global warming control[J]. Renewable Sustainable Energy Rev, 2011,15(1):891-894. doi: 10.1016/j.rser.2010.09.048

    3. [3]

      KIRSCHKE S, NEWIG J, VÖLKER J, BORCHARDT D. Does problem complexity matter for environmental policy delivery? How public authorities address problems of water governance[J]. J Environ Manage, 2017,196:1-7. doi: 10.1016/j.jenvman.2017.02.068

    4. [4]

      FOLEY D K, REZAI A, TAYLOR L. The social cost of carbon emissions:Seven propositions[J]. Econom Lett, 2013,121(1):90-97. doi: 10.1016/j.econlet.2013.07.006

    5. [5]

      SOUCHE I, CHATALIC A, BREGEON B G. Hydrogen combustion characteristics, its performances as a clean fuel compared to fossil fuel ones[J]. Int J Hydrogen Energy, 1988,13(5):299-310. doi: 10.1016/0360-3199(88)90054-7

    6. [6]

      WINTER C J. Hydrogen energy-Abundant, efficient, clean:A debate over the energy-system-of-change[J]. Int J Hydrogen Energy, 2009,34(14):S1-S52. doi: 10.1016/j.ijhydene.2009.05.063

    7. [7]

      BICELLI L P. Hydrogen:A clean energy source[J]. Int J Hydrogen Energy, 1986,11(9):555-562. doi: 10.1016/0360-3199(86)90121-7

    8. [8]

      SEMELSBERGER T A, BORUP R L, GREENE H L. Dimethyl ether (DME) as an alternative fuel[J]. J Power Sources, 2006,156(2):497-511. doi: 10.1016/j.jpowsour.2005.05.082

    9. [9]

      SEMELSBERGER T A, BORUP R L. Thermodynamic equilibrium calculations of hydrogen production from the combined processes of dimethyl ether steam reforming and partial oxidation[J]. J Power Sources, 2006,155(2):340-352. doi: 10.1016/j.jpowsour.2005.04.031

    10. [10]

      FAUNGNAWAKIJ K, VIRIYA-EMPIKUL N, TANTHAPANICHAKOON W. Evaluation of the thermodynamic equilibrium of the autothermal reforming of dimethyl ether[J]. Int J Hydrogen Energy, 2011,36(10):5865-5874. doi: 10.1016/j.ijhydene.2011.02.027

    11. [11]

      GALVITA V V, SEMIN G L, BELYAEV V D, YURIEVA T M, SOBYANIN V A. Production of hydrogen from dimethyl ether[J]. Appl Catal A:Gen, 2001,216(1):85-90.

    12. [12]

      SOBYANIN V A, CAVALLARO S, FRENI S. Dimethyl ether steam reforming to feed molten carbonate fuel cells[J]. Appl Catal A:Gen, 2000,14(6):1139-1142.  

    13. [13]

      FENG Dong-mei. Research on the catalytic process of hydrogen production from dimethyl ether reforming[D]. Beijing: Tsinghua University, 2008.

    14. [14]

      SEMELSBERGER T A, OTT K C, BORUP R L, GREENE H L. Role of acidity on the hydrolysis of dimethyl ether (DME) to methanol[J]. Appl Catal B:Environ, 2005,61(3/4):281-287.  

    15. [15]

      SEMELSBERGER T A, OTT K C, BORUP R L, GREENE H L. Generating hydrogen-rich fuel-cell feeds from dimethyl ether (DME) using Cu/Zn supported on various solid-acid substrates[J]. Appl Catal A:Gen, 2006,309(2):210-223. doi: 10.1016/j.apcata.2006.05.009

    16. [16]

      YANG M, MEN Y, LI S L, CHEN G W. Enhancement of catalytic activity over TiO2-modified Al2O3 and ZnO-Cr2O3 composite catalyst for hydrogen production via dimethyl ether steam reforming[J]. Appl Catal A:Gen, 2012,433-434(31):26-34.

    17. [17]

      LI Juan, HAI Hang, YAN Chang-feng, HU Rong-rong, YAO Zhi-wei, LUO Wei-min, GUO Chang-qing, LI Wen-bo. Effect of calcination temperature on properties of Cu/ZnO/Al2O3/Cr2O3+H-ZSM-5 bi-functional catalysts for steam reforming of dimethyl ether[J]. J Fuel Chem Technol, 2012,40(10):1240-1245.  

    18. [18]

      HE Jian-ping, ZHANG Lei, CHEN Lin, YANG Zhan-xu, TONG Yu-fei. Effect of CeO2 on Cu/Zn-Al catalysts derived from hydrotalcite precursor for methanol steam reforming[J]. Chem J Chin Univ, 2017,38(10):1822-1828.

    19. [19]

      WANG Dong-sheng, TAN Yi-sheng, HAN Yi-zhuo, Noritatsu TSUBAKI. Study on deactivation of hybrid catalyst for dimethyl ether synthesis in slurry reactor[J]. J Fuel Chem Technol, 2008,36(2):176-180.  

    20. [20]

      GAO Zhi-hua, HUANG Wei, LI Jun-fang, YIN Li-hua, XIE Ke-chang. Liquid-phase preparation of DME slurry catalysts using pseudo-boehmite as aluminum source[J]. Chem J Chin Univ, 2009,30(3):534-538.  

    21. [21]

      FAUNGNAWAKIJ K, FUKUNAGA T, KIKUCHI R, EGUCHI K. Deactivation and regeneration behaviors of copper spinel-alumina composite catalysts in steam reforming of dimethyl ether[J]. J Catal, 2008,256(1):37-44. doi: 10.1016/j.jcat.2008.02.022

    22. [22]

      TENG Y, SONG L X, PONCHEL A, YANG Z K, XIA J. Self-assembled metastable γ-Ga2O3 nanoflowers with hexagonal nanopetals for solar-blind photodetection[J]. Adv Mater, 2014,26(36):6238-6243. doi: 10.1002/adma.201402047

    23. [23]

      NAKATANI T, WATANABE T, TAKAHASHI M, MIYAHARA Y, DEGUCHI H, IWAMOTO S, KANAI H, INOUE M. Characterization of γ-Ga2O3-Al2O3 prepared by solvothermal method and its performance for methane-SCR of NO[J]. J Phys Chem A, 2009,113(25):7021-7029. doi: 10.1021/jp901569s

    24. [24]

      PLAYFORD H Y, HANNON A C, TUCKER M G, DAWSON D M, ASHBROOK S E, KASTIBAN R J, SLOAN J, WALTON R I. Characterisation of structural disorder in γ-Ga2O3[J]. J Phys Chem C, 2014,118(29):16188-16198. doi: 10.1021/jp5033806

    25. [25]

      YANG Xi-yao. Methods for the investigation of solid catalyst-Chapter 13, Temperature programming analytical technique (Part 2)[J]. Petrochem Technol, 2002,31(1):63-73.  

    26. [26]

      ZHOU Ying-chun, LI Hao, ZHANG Qi-jian, MA Chang. PdZn-based catalysts for steam reform ing of dimethyl ether[J]. Acta Pet Sin (Pet Process), 2011,27(4):537-542.  

    27. [27]

      KOU Su-yuan, WANG Xiao-lei, REN Ke-wei, PAN Xiang-min, LI Rui, MA Jian-xin. Thermodynamic analysis of hydrogen production from dimethyl ether steam reforming[J]. Nat Gas Chem Ind, 2009,34(1):35-40.  

    28. [28]

      TAKEISHI K, AKAIKE Y. Hydrogen production by dimethyl ether steam reforming over copper alumina catalysts prepared using the sol-gel method[J]. Appl Catal A:Gen, 2016,510:20-26. doi: 10.1016/j.apcata.2015.09.027

  • 加载中
    1. [1]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    2. [2]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    3. [3]

      Honglin Gao Chunlin Yuan Hongyu Chen Aiyi Dong Pan Gao Guangjin Hou . Surface gallium hydride on Ga2O3 polymorphs: A comparative solid-state NMR study. Chinese Journal of Structural Chemistry, 2025, 44(4): 100561-100561. doi: 10.1016/j.cjsc.2025.100561

    4. [4]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    5. [5]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    6. [6]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    7. [7]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    8. [8]

      Jianding LIJunyang FENGHuimin RENGang LI . Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464

    9. [9]

      Yuping Wei Yiting Wang Jialiang Jiang Jinxuan Deng Hong Zhang Xiaofei Ma Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007

    10. [10]

      Runhua ChenQiong WuJingchen LuoXiaolong ZuShan ZhuYongfu Sun . Defective Ultrathin Two-Dimensional Materials for Photo-/Electrocatalytic CO2 Reduction: Fundamentals and Perspectives. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-0. doi: 10.3866/PKU.WHXB202308052

    11. [11]

      Lifang HEWenjie TANGYaoze LUOMingsheng LIANGJianxin TANGYuxuan WUFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two dialkyltin complexes constructed based on 2, 2′-bipyridin-6, 6′-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1601-1609. doi: 10.11862/CJIC.20250012

    12. [12]

      Qi WuChanghua WangYingying LiXintong Zhang . Enhanced photocatalytic synthesis of H2O2 by triplet electron transfer at g-C3N4@BN van der Waals heterojunction interface. Acta Physico-Chimica Sinica, 2025, 41(9): 100107-0. doi: 10.1016/j.actphy.2025.100107

    13. [13]

      Yanglin JiangMingqing ChenMin LiangYige YaoYan ZhangPeng WangJianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 2309027-0. doi: 10.3866/PKU.WHXB202309027

    14. [14]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    15. [15]

      Tiejun Su . The Construction and Application of the Calculation Formula for Endpoint Error in Precipitation Titration: A Case Study of the Mohr Method. University Chemistry, 2024, 39(11): 384-387. doi: 10.12461/PKU.DXHX202402039

    16. [16]

      Xiaoyang Li Xiaowei Huang Yimeng Zhang Huan Liu Shao Jin Junpeng Zhuang . Comprehensive Chemical Experiments on the Synthesis of 1,3-Dibromo-5,5-Dimethylhydantoin and Its Application as a Brominating Reagent. University Chemistry, 2025, 40(7): 286-293. doi: 10.12461/PKU.DXHX202408035

    17. [17]

      Juan GuoMingyuan FangQingsong LiuXiao RenYongqiang QiaoMingju ChaoErjun LiangQilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957

    18. [18]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    19. [19]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    20. [20]

      Yufan ZHAOJinglin YOUShixiang WANGGuopeng LIUXiang XIAYingfang XIEMeiqin SHENGFeiyan XUKai TANGLiming LU . Raman spectroscopic quantitative study of the melt microstructure in binary Li2O-GeO2 functional crystals. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1533-1544. doi: 10.11862/CJIC.20250063

Metrics
  • PDF Downloads(6)
  • Abstract views(973)
  • HTML views(337)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return