Citation: YANG Jian, LIN Fan, CHEN Kui, KONG Ming, ZHAO Dong, MENG Fei. Activity and SO2 deactivation mechanism of vanadium series catalyst containing cerium[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(11): 1394-1400. shu

Activity and SO2 deactivation mechanism of vanadium series catalyst containing cerium

  • Corresponding author: YANG Jian, skyinjune@cqu.edu.cn
  • Received Date: 13 June 2016
    Revised Date: 17 July 2016

    Fund Project: the National Natural Science Foundation of China 51204220National Natural Science Foundation of Chongqing cstc2013jjB0035the National Natural Science Foundation of China 51274263

Figures(7)

  • The promotion effect of Ce modification on V2O5-WO3/TiO2 for the selective catalytic reduction (SCR) of NOx with NH3 and the SO2 deactivation mechanism were investigated. Compared with V1W5Ti catalyst, the advantage of V1W5Ce6Ti catalyst shows a good catalytic activity. These catalysts were investigated by means of XRD, BET, FT-IR, TG-DSC and XPS. The results demonstrate that the active components of V and W are well-dispersed, while a small cluster of cubic CeO2 appears over the V1W5Ce8Ti catalyst. The sulfation of V1W5Ti under reactive conditions can generate NH4HSO4 and (NH4)2SO4 at 250℃. The Ce additive to V1W5Ti could provide stronger Brønsted acid sites and more chemisorbed oxygen. The deposited ammonium sulfate on V1W5Ce6Ti catalyst is much smaller than that on V1W5Ti because the cerium sulfates species on the surface of V1W5Ce6Ti is formed and the deposition of ammonium sulfate is inhibited, which can disrupt the redox cycle between Ce3+ and Ce4+ and break the V-O-Ce structure, causing the deactivation of V1W5Ce6Ti catalyst.
  • 加载中
    1. [1]

      ZHANG L, LI L, CAO Y, YAO X, GE C, GAO F, DENG Y, TANG C, DONG L. Getting insight into the influence of SO2 on TiO2/CeO2 for the selective catalytic reduction of NO by NH3[J]. Appl Catal B:Environ, 2015,165:589-598. doi: 10.1016/j.apcatb.2014.10.029

    2. [2]

      KONG M, LIU Q C, ZHU B H, YANG J, LI L, ZHOU Q, REN S. Synergy of KCl and Hg-el on selective catalytic reduction of NO with NH3 over V2O5-WO3/TiO2 catalysts[J]. Chem Eng J, 2015,264:815-823. doi: 10.1016/j.cej.2014.12.038

    3. [3]

      JIN R, LIU Y, WANG Y, CEN W, WU Z, WANG H, WENG X. The role of cerium in the improved SO2 tolerance for NO reduction with NH3 over Mn-Ce/TiO2 catalyst at low temperature[J]. Appl Catal B:Environ, 2014,148:582-588.

    4. [4]

      BUSCA G, LIETTI L, RAMIS G, BERTI F. Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts:A review[J]. Appl Catal B:Environ, 1998,18(1):1-36.

    5. [5]

      OLIVERI G, BUSCA G, LORENZELLI V. Structure and surface-area evolution of vanadia-on-titania powders upon heat-treatment[J]. Mater Chem Phys, 1989,22(5):511-521. doi: 10.1016/0254-0584(89)90063-1

    6. [6]

      AMORES J M G, ESCRIBANO V S, BUSCA G. Anatase crystal-growth and phase-transformation to rutile in high-area TiO2, MoO3-TiO2 and other TiO2-supported oxide catalytic-systems[J]. J Mater Chem, 1995,5(8):1245-1249. doi: 10.1039/JM9950501245

    7. [7]

      CHEN J P, BUZANOWSKI M A, YANG R.T, CICHANOWICZ J E. Deactivation of the vanadia catalyst in the selective catalytic reduction process[J]. J Air Waste Manage, 1990,40(10):1403-1409. doi: 10.1080/10473289.1990.10466793

    8. [8]

      JIANG Y, XING Z, WANG X, ET A L. Activity and characterization of a Ce-W-Ti oxide catalyst prepared by a single step sol-gel method for selective catalytic reduction of NO with NH3[J]. Fuel, 2015,151:124-129. doi: 10.1016/j.fuel.2015.01.061

    9. [9]

      LEE K J, KUMAR P A, MAQBOOL M S. Ceria added Sb-V2O5/TiO2 catalysts for low temperature NH3 SCR:Physico-chemical properties and catalytic activity[J]. Appl Catal B:Environ, 2013,142:705-717.

    10. [10]

      KWON D W, NAM K B, HONG S C. The role of ceria on the activity and SO2 resistance of catalysts for the selective catalytic reduction of NOx by NH3[J]. Appl Catal B:Environ, 2015,166-167:37-44. doi: 10.1016/j.apcatb.2014.11.004

    11. [11]

      LIU Xin, NING Ping, LI Hao, SONG Zhong-xian, WANG Yan-cai, ZHANG Jin-hui, TANG Xiao-su, WANG Ming-zhi, ZHANG Qiu-lin. Probing NH3-SCR catalytic activity and SO2 resistance over aqueous-phase synthesized Ce-W@TiO2 catalyst[J]. J Fuel Chem Technol, 2016,44(2):225-231. doi: 10.1016/S1872-5813(16)30010-X 

    12. [12]

      KWON D W, PARK K H, HONG S C. Enhancement of SCR activity and SO2 resistance on VOx/TiO2 catalyst by addition of molybdenum[J]. Chem Eng J, 2016,284:315-324. doi: 10.1016/j.cej.2015.08.152

    13. [13]

      ZHANG L, LI L, CAO Y. Getting insight into the influence of SO2 on TiO2/CeO2 for the selective catalytic reduction of NO by NH3[J]. Appl Catal B:Environ, 2015,165:589-598. doi: 10.1016/j.apcatb.2014.10.029

    14. [14]

      KONG M, LIU Q, WANG X, REN S, YANG J, ZHAO D, XI W, YAO L. Performance impact and poisoning mechanism of arsenic over commercial V2O5-WO3/TiO2 SCR catalyst[J]. Catal Commun, 2015,72:121-126. doi: 10.1016/j.catcom.2015.09.029

    15. [15]

      ZHAO H, BENNICI S, SHEN J, AUROUX A. The influence of the preparation method on the structural, acidic and redox properties of V2O5-TiO2/SO42- catalysts[J]. Appl Catal A:Gen, 2009,356(2):121-128. doi: 10.1016/j.apcata.2008.12.037

    16. [16]

      STOILOVA D, GEORGIEV M, MARINOVA D. Infrared study of the vibrational behavior of CrO42- guest ions matrix-isolated in metal (Ⅱ) sulfates (Me=Ca, Sr, Ba, Pb)[J]. J Mol Struct, 2005,738(1):211-215.  

    17. [17]

      TOPSØE N Y, DUMESIC J A, TOPSØE H. Vanadia/titania catalysts for selective catalytic reduction (SCR) of nitric oxide by ammonia. Ⅱ. Studies of active sites and formulation of catalytic cycles[J]. J Catal, 1995,151(1):241-252. doi: 10.1006/jcat.1995.1025

    18. [18]

      GUO XY, BARTHOLOMEW C, HECKER W, BAXTER LL. Effects of sulfate species on V2O5/TiO2 SCR catalysts in coal and biomass-fired systems[J]. Appl Catal B:Environ, 2009,92(1):30-40.

    19. [19]

      MA Z, WU XD, FENG Y, SI ZC, WENG D, SHI L. Low-temperature SCR activity and SO2 deactivation mechanism of Ce-modified V2O5-WO3/TiO2 catalyst[J]. Prog Nat Sci Mater, 2015,25(4):342-352. doi: 10.1016/j.pnsc.2015.07.002

    20. [20]

      YANG J, YANG Q, SUN J. Effects of mercury oxidation on V2O5-WO3/TiO2 catalyst properties in NH3-SCR process[J]. Catal Commun, 2015,59:78-82. doi: 10.1016/j.catcom.2014.09.049

    21. [21]

      KOHIKI S, SHIMOOKA H, TAKADA S, SHIMIZU A, HIRAKAWA T, TAKAHASHI S. Synthesis and magnetic properties of mesoporous vanadium oxide sulphate[J]. Chem Lett, 2002,7:670-671.

    22. [22]

      LIU CX, CHEN L, LI JH, MA L, ARANDIYAN H, DU Y. Enhancement of activity and sulfur resistance of CeO2 supported on TiO2-SiO2 for the selective catalytic reduction of NO by NH3[J]. Environ Sci Technol, 2012,46(11):6182-6189. doi: 10.1021/es3001773

  • 加载中
    1. [1]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    2. [2]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    3. [3]

      Shuangxi LiHuijun YuTianwei LanLiyi ShiDanhong ChengLupeng HanDengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240

    4. [4]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    5. [5]

      Yu WangHaiyang ShiZihan ChenFeng ChenPing WangXuefei Wang . 具有富电子Ptδ壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081

    6. [6]

      Lijun Yue Siya Liu Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005

    7. [7]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    8. [8]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    9. [9]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    10. [10]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    11. [11]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    12. [12]

      Xianghai SongXiaoying LiuZhixiang RenXiang LiuMei WangYuanfeng WuWeiqiang ZhouZhi ZhuPengwei Huo . Insights into the greatly improved catalytic performance of N-doped BiOBr for CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-0. doi: 10.1016/j.actphy.2025.100055

    13. [13]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    14. [14]

      Wei ZhongDan ZhengYuanxin OuAiyun MengYaorong Su . Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-0. doi: 10.3866/PKU.WHXB202406005

    15. [15]

      Zhuoyan LvYangming DingLeilei KangLin LiXiao Yan LiuAiqin WangTao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 2408015-0. doi: 10.3866/PKU.WHXB202408015

    16. [16]

      Qing LiYumei FengYuhua XieQi XuYifei LiYingjie YuFang LuoZehui Yang . MOF derived RuO2/V2O5 nanoneedles for robust and stable water oxidation in acid. Chinese Chemical Letters, 2025, 36(7): 111074-. doi: 10.1016/j.cclet.2025.111074

    17. [17]

      Haohao SunWenxuan WangYuli XiongZelang JianWen Chen . Boosting the electrochromic properties by large V2O5 nanobelts interlayer spacing tuned via PEDOT. Chinese Chemical Letters, 2024, 35(9): 109213-. doi: 10.1016/j.cclet.2023.109213

    18. [18]

      Jun HuangPengfei NieYongchao LuJiayang LiYiwen WangJianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-0. doi: 10.1016/j.actphy.2025.100066

    19. [19]

      Zhangyong LIULihui XUYue YANGLiming WANGHong PANXinzhe HUANGXueqiang FUYingxiu ZHANGMeiran DOUMeng WANGYi TENG . Preparation and photocatalytic performance of CsxWO3/TiO2 based on full spectral response. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1445-1464. doi: 10.11862/CJIC.20240345

    20. [20]

      Jingkun YuXue YongAng CaoSiyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015

Metrics
  • PDF Downloads(5)
  • Abstract views(2423)
  • HTML views(1098)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return