Citation: YANG Shu-qian, ZHANG Na, HE Jian-ping, ZHANG Lei, WANG Hong-hao, BAI Jin, ZHANG Jian, LIU Dao-sheng, YANG Zhan-xu. Effect of impregnation sequence of Ce on the performance of Cu/Zn-Al catalysts derived from hydrotalcite precursor in methanol steam reforming[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(4): 479-488. shu

Effect of impregnation sequence of Ce on the performance of Cu/Zn-Al catalysts derived from hydrotalcite precursor in methanol steam reforming

  • Corresponding author: ZHANG Lei, lnpuzhanglei@163.com BAI Jin, baijin_fy@163.com
  • Received Date: 30 October 2017
    Revised Date: 13 December 2017

    Fund Project: the Science Research General Foundation of Liaoning Education Department L2015296the Doctoral Scientific Research Foundation of Liaoning Provinve 201601322The project was supported by the National Natural Science Foundation of China (21376237), the Doctoral Scientific Research Foundation of Liaoning Provinve (201601322), the Science Research General Foundation of Liaoning Education Department(L2015296) and Research Fund Project for the Construction of Instrument and Equipment Sharing Service Platform of Liaoningthe National Natural Science Foundation of China 21376237

Figures(11)

  • ZnAl-LDHs was prepared by in-situ synthesis method on γ-Al2O3 and the Cu/Zn-Al, Ce/Cu/Zn-Al, Cu/Ce/Zn-Al and Cu-Ce/Zn-Al catalysts were then obtained by wet impregnation method for methanol steam reforming. The catalysts were characterized by XRD, XRF, SEM, N2 sorption, XPS, H2-TPR and N2O titration; the effect of impregnation sequence of Ce on the performance of the Cu/Zn-Al catalysts in methanol steam reforming to produce hydrogen was investigated. The results showed that the impregnation sequence of Ce has a significant influence on the reducibility of resultant catalyst, which subsequently affects the catalytic performance. The Ce/Cu/Zn-Al catalyst exhibits the highest activity; over it, the methanol conversion reaches 100% under 250℃ and with a water/methanol molar ratio of 1.2 and gas hourly space velocity of 800 h-1, which is almost 40% higher than that achieved on the Cu/Zn-Al catalyst.
  • 加载中
    1. [1]

      SA S, SILVA H, BRANDAO L, SOUSA J M, MENDES A. Catalysts for methanol steam reforming-A review[J]. Appl Catal B:Environ, 2010,99(1/2):43-57.  

    2. [2]

      LYTKINA A A, ZHILYAEVA N A, ERMILOVA M M, OREKHOVA N V, YAROSLAVTSEV A B. Influence of the support structure and composition of Ni-Cu-based catalysts on hydrogen production by methanol steam reforming[J]. Int J Hydrogen Energy, 2015,40(31):9677-9684. doi: 10.1016/j.ijhydene.2015.05.094

    3. [3]

      ZHANG Lei, LEI Jun-teng, TIAN Yuan, HU Xin, BAI Jin, LIU Dan, YANG Yi, PAN Li-wei. Effect of precursor and precipitant concentration on the performance of CuO/ZnO/CeO2-ZrO2 catalyst for methanol steam reforming[J]. J Fuel Chem Technol, 2015,43(11):1366-1374. doi: 10.3969/j.issn.0253-2409.2015.11.012 

    4. [4]

      BASILE A, PARMALIANA A, TOSTI S, LULIANELLI A, GALLUCCI F, ESPRO C, SPOOREN J. Hydrogen production by methanol steam reforming carried out in membrane reactor on Cu/Zn/Mg-based catalyst[J]. Catal Today, 2008,137(1):17-22. doi: 10.1016/j.cattod.2008.03.015

    5. [5]

      MA Y F, GUAN G Q, PHANTHONG P, LI X M, CAO J, HAO X G, WANG Z D, ABUDULA A. Steam reforming of methanol for hydrogen production over nanostructured wire-like molybdenum carbide catalyst[J]. Int J Hydrogen Energy, 2014,39(33):18803-18811. doi: 10.1016/j.ijhydene.2014.09.062

    6. [6]

      KUC J, NEUMANN M, ARMBRUSTER M, YOON S, ZHANG Y C, ERNI R, WEIDENKAFF A, MATAM S K. Methanol steam reforming catalysts derived by reduction of perovskite-type oxides LaCo1-x-yPdxZnyOδ[J]. Catal Sci Technol, 2016,6(5):1455-1468. doi: 10.1039/C5CY01410G

    7. [7]

      AGRELL J, GERMANI G, JARAS S G, BOUTONNET M. Production of hydrogen by partial oxidation of methanol over ZnO-supported palladium catalysts prepared by microemulsion technique[J]. Appl Catal A:Gen, 2003,242(2):233-245. doi: 10.1016/S0926-860X(02)00517-3

    8. [8]

      LIU N, YUAN Z S, WANG C W, WANG S D, ZHANG C X, WANG S J. The role of CeO2-ZrO2 as support in the ZnO-ZnCr2O4 catalysts for autothermal reforming of methanol[J]. Fuel Process Technol, 2008,89(6):574-581. doi: 10.1016/j.fuproc.2007.11.029

    9. [9]

      HUANG G, LIAW B J, JHANG C J, CHEN Y Z. Steam reforming of methanol over CuO/ZnO/CeO2/ZrO2/Al2O3 catalysts[J]. Appl Catal A:Gen, 2009,358(1):7-12. doi: 10.1016/j.apcata.2009.01.031

    10. [10]

      LI Y F, DONG X F, LIN W M. Effects of ZrO2-promoter on catalytic performance of CuZnAlO catalysts for production of hydrogen by steam reforming of methanol[J]. Int J Hydrogen Energy, 2004,29(15):1617-1621. doi: 10.1016/j.ijhydene.2004.03.001

    11. [11]

      JIANG Yuan-li, HUANG Qiang, WANG Fu-an, HYUN K D, SOOK L M. Kinetic study of methanol steam reforming over Cu/ZnO/Al2O3 catalysts[J]. J Fuel Chem Technol, 2001,29(4):347-350.  

    12. [12]

      FIERRO G, JACONO M L, INVERSI M, PORTA P, CIOCI F, LAVECCHIA R. Study of the reducibility of copper in CuO/ZnO catalysts by temperature-programmed reduction[J]. Appl Catal A:Gen, 1996,137(2):327-348. doi: 10.1016/0926-860X(95)00311-8

    13. [13]

      CHOI Y, FUTAGAMI K, FUTAGAMI K, FUJITANI T, NAKAMURA J. The role of ZnO in Cu/ZnO methanol synthesis catalysts-morphology effect or active site model[J]. Appl Catal A:Gen, 2001,208(1/2):163-167.  

    14. [14]

      KIM W, MOHAIDEEN K K, SEO D J, YOON W L. Methanol-steam reforming reaction over Cu-Al-based catalysts derived from layered double hydroxides[J]. Int J Hydrogen Energy, 2017,42(4):2081-2087. doi: 10.1016/j.ijhydene.2016.11.014

    15. [15]

      CHAO Lei, WU Dan-dan, LI Gong. Study on catalytic properties of Cu-Fe-MgO/AlPO4-5 for hydrogen production from steam reforming of methanol[J]. J Fuel Chem Technol, 2017,45(9):1105-1113.  

    16. [16]

      DAS D, LLORCA J, DOMINGUEZ M, COLUSSI S, TROVARELLI A, GAYEN A. Methanol steam reforming behavior of copper impregnated over CeO2-ZrO2 derived from a surfactant assisted coprecipitation route[J]. Int J Hydrogen Energy, 2015,40(33):10463-10479. doi: 10.1016/j.ijhydene.2015.06.130

    17. [17]

      HAMMOUD D, GENNEQUIN C, ABOUKAIS A, AAD E A. Steam reforming of methanol over x% Cu/Zn-Al 400500 based catalysts for production of hydrogen:Preparation by adopting memory effect of hydrotalcite and behavior evaluation[J]. Int J Hydrogen Energy, 2015,40(2):1283-1297. doi: 10.1016/j.ijhydene.2014.09.080

    18. [18]

      LIN K S, CHOWDHURY S, YEH H P, HONG W T, YEH C T. Preparation and characterization of CuO/ZnO-Al2O3 catalyst washcoats with CeO2 sols for autothermal reforming of methanol in a microreactor[J]. Catal Today, 2011,164(1):251-256. doi: 10.1016/j.cattod.2010.11.038

    19. [19]

      UDANI P P C, GUNAWARDANA P V D S, LEE H C, KIM D H. Steam reforming and oxidative steam reforming of methanol over CuO-CeO2 catalysts[J]. Int J Hydrogen Energy, 2009,34(18):7648-7655. doi: 10.1016/j.ijhydene.2009.07.035

    20. [20]

      PATEL S, PANT K K. Hydrogen production by oxidative steam reforming of methanol using ceria promoted copper-alumina catalysts[J]. Fuel Process Technol, 2007,88(8):825-832. doi: 10.1016/j.fuproc.2007.04.004

    21. [21]

      ZHANG Xin-rong, SHI Peng-fei. Catalytic production of hydrogen form steam reforming of methanol on CeO2 promoted Cu/Al2O3 catalysts[J]. Acta Phys-Chim Sin, 2003,19(1):85-89.  

    22. [22]

      SHIM J O, NA H S, JHA A, JANG W J, JEONG D W, NAH I W, JEON B H, ROH H S. Effect of preparation method on the oxygen vacancy concentration of CeO2-promoted Cu/γ-Al2O3 catalysts for HTS reactions[J]. Chem Eng J, 2016,306:908-915. doi: 10.1016/j.cej.2016.08.030

    23. [23]

      HE J P, YANG Z X, ZHANG L, LI Y, PAN L W. Cu supported on ZnAl-LDHs precursor prepared by in-situ synthesis method on γ-Al2O3 as catalytic material with high catalytic activity for methanol steam reforming[J]. Int J Hydrogen Energy, 2017,42(15):9930-9937. doi: 10.1016/j.ijhydene.2017.01.229

    24. [24]

      XIE R F, FAN G L, YANG L, LI F. Solvent-free oxidation of ethylbenzene over hierarchical flower-like core-shell structured Co-based mixed metal oxides with significantly enhanced catalytic performance[J]. Catal Sci Technol, 2015,5(1):540-548. doi: 10.1039/C4CY00744A

    25. [25]

      AGARWAL V, PATEL S, PANT K K. H2 production by steam reforming of methanol over Cu/ZnO/Al2O3 catalysts:Transient deactivation kinetics modeling[J]. Appl Catal A:Gen, 2005,279(1/2):155-164.

    26. [26]

      ZHANG L, PAN L W, NI C J, SUN T J, ZHAO S S, WANG S D, WANG A J, HU Y K. CeO2-ZrO2-promoted CuO/ZnO catalyst for methanol steam reforming[J]. Int J Hydrogen Energy, 2013,38(11):4397-4406. doi: 10.1016/j.ijhydene.2013.01.053

    27. [27]

      ZHANG L PAN L W, SUN T J, WANG S D, HU Y K, WANG A J, ZHAO S S. Effects of precipitation aging time on the performance of CuO/ZnO/CeO2-ZrO2 for methanol steam reforming[J]. J Fuel Chem Technol, 2013,41(7):883-888. doi: 10.1016/S1872-5813(13)60038-9

    28. [28]

      HURST N W, GENTRY S J, JONES A, MCNICOL B D. Temperature programmed reduction[J]. Catal Rev Sci Eng, 1982,24(2):233-309. doi: 10.1080/03602458208079654

    29. [29]

      WANG C, CHENG Q P, WANG X L, MA K, BAI X Q, TAN S R, TIAN Y, TONG D, ZHENG L R, ZHANG J, LI X G. Enhanced catalytic performance for CO preferential oxidation over CuO catalysts supported on highly defective CeO2 nanocrystals[J]. Appl Surf Sci, 2017,422:932-943. doi: 10.1016/j.apsusc.2017.06.017

    30. [30]

      JONES S D, NEAL L M, HAGELIN WEAVER H E. Steam reforming of methanol using Cu-ZnO catalysts supported on nanoparticle alumina[J]. Appl Catal B:Environ, 2008,84(3/4):631-642.  

    31. [31]

      ZHANG Guo-qiang, GUO Tian-yu, ZHNEG Hua-yan, LI Zhong. Effect of calcination temperature on catalytic performance of CuCe/Ac catalysts for oxidative carbonylation of methanol[J]. J Fuel Chem Technol, 2016,44(6):674-679.  

    32. [32]

      YAO X J, GAO F, YU Q, QI L, TANG C J, DONG L, CHEN Y. NO reduction by CO over CuO-CeO2 catalysts:Effect of preparation methods[J]. Catal Sci Technol, 2013,3(5):1355-1366. doi: 10.1039/c3cy20805b

    33. [33]

      XIAO S, ZHANG Y F, GAO P, ZHONG L S, LI X P, ZHANG Z Z, WANG H, WEI W, SUN Y H. Highly efficient cu-based catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol[J]. Catal Today, 2017,281:327-336. doi: 10.1016/j.cattod.2016.02.004

    34. [34]

      LIU L J, YAO Z J, DENG Y, GAO F, LIU B, DONG L. Morphology and crystal plane effects of nanoscale ceria on the activity of CuO/CeO2 for NO reduction by CO[J]. ChemCatChem, 2011,3(6):978-989. doi: 10.1002/cctc.v3.6

    35. [35]

      LIANG F L, YU Y, ZHOU W, XU X Y, ZHU Z H. Highly defective CeO2 as a promoter for efficient and stable water oxidation[J]. J Mater Chem A, 2015,3(2):634-640. doi: 10.1039/C4TA05770H

    36. [36]

      SU Shi-long, ZHANG Lei, ZHANG Yan, LEI Jun-teng, GUI Jian-zhou, LIU Dan, LIU Dao-sheng, PAN Li-wei. Thermodynamic simulation for hydrogen production in the methanol steam reforming system of kilowatt PEMFC[J]. Journal of Petrochemical Universities, 2015,28(2):19-25.  

  • 加载中
    1. [1]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    2. [2]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    3. [3]

      Junjie TANGYunting ZHANGZhengjiang LIUJiani WU . Preparation of CeO2 by starch template method for photo-Fenton degradation of methyl orange. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1617-1631. doi: 10.11862/CJIC.20240420

    4. [4]

      Qin HuLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of Electron Bridge and Activation of MoS2 Inert Basal Planes by Ni Doping for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-0. doi: 10.3866/PKU.WHXB202406024

    5. [5]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    6. [6]

      Meiran LiYingjie SongXin WanYang LiYiqi LuoYeheng HeBowen XiaHua ZhouMingfei Shao . Nickel-Vanadium Layered Double Hydroxides for Efficient and Scalable Electrooxidation of 5-Hydroxymethylfurfural Coupled with Hydrogen Generation. Acta Physico-Chimica Sinica, 2024, 40(9): 2306007-0. doi: 10.3866/PKU.WHXB202306007

    7. [7]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    8. [8]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    9. [9]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    10. [10]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    11. [11]

      Liu LinZemin SunHuatian ChenLian ZhaoMingyue SunYitao YangZhensheng LiaoXinyu WuXinxin LiCheng Tang . Recent Advances in Electrocatalytic Two-Electron Water Oxidation for Green H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(4): 2305019-0. doi: 10.3866/PKU.WHXB202305019

    12. [12]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    13. [13]

      Yue ZhangBao LiLixin Wu . GO-Assisted Supramolecular Framework Membrane for High-Performance Separation of Nanosized Oil-in-Water Emulsions. Acta Physico-Chimica Sinica, 2024, 40(5): 2305038-0. doi: 10.3866/PKU.WHXB202305038

    14. [14]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    15. [15]

      Shi-Yu LuWenzhao DouJun ZhangLing WangChunjie WuHuan YiRong WangMeng Jin . Amorphous-Crystalline Interfaces Coupling of CrS/CoS2 Few-Layer Heterojunction with Optimized Crystallinity Boosted for Water-Splitting and Methanol-Assisted Energy-Saving Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(8): 2308024-0. doi: 10.3866/PKU.WHXB202308024

    16. [16]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    17. [17]

      Jiaxin SuJiaqi ZhangShuming ChaiYankun WangSibo WangYuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-0. doi: 10.3866/PKU.WHXB202408012

    18. [18]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    19. [19]

      Yuan GAOYiming LIUChunhui WANGZhe HANChaoyue FANJie QIU . A hexanuclear cerium oxo cluster stabilized by furoate: Synthesis, structure, and remarkable ability to scavenge hydroxyl radicals. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 491-498. doi: 10.11862/CJIC.20240271

    20. [20]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

Metrics
  • PDF Downloads(8)
  • Abstract views(1446)
  • HTML views(322)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return