Citation: Hui Peng, Yang Rong, Deng Qijiu, Yan Yinglin, Xu Yunhua. Research Progress of Metal Oxides for Modification of Sulfur Cathode in Lithium-Sulfur Batteries[J]. Chemistry, ;2019, 82(11): 982-988. shu

Research Progress of Metal Oxides for Modification of Sulfur Cathode in Lithium-Sulfur Batteries

Figures(4)

  • Lithium-sulfur batteries are considered to be the next generation of energy storage devices due to their high energy density, abundant raw materials and low price. However, the development of lithium-sulfur batteries still faces many problems, including the shuttle effect of polysulfide, the poor conductivity of elemental sulfur, the poor coulombic efficiency caused by sulfur volume expansion during charging, the rapid decay of capacity and the corrosion of lithium anode. In recent years, metal oxides have been widely used in the modification of positive electrodes of lithium-sulfur batteries because of their ability to adsorb polysulfides, improving the mutual conversion ability between polysulfides, forming nanoscale structure with a 3D morphology, and playing a key role in the combination of host material and polysulfide. In this paper, the research progress in various metal oxides (transition metal oxides, binary and multi-metal oxides, other metal oxides) for the modification of lithium-sulfur battery cathode composites is reviewed. The application prospect of metal oxides in lithium-sulfur batteries is prospected.
  • 加载中
    1. [1]

      L Carbone, T Coneglian, M Gobet et al. J. Power Sources, 2018, 377: 26~35. 

    2. [2]

      Y Zhang, Z Bakenov, Y Zhao et al. Powder Technology, 2013, 235: 248~255. 

    3. [3]

      A Fotouhi, D Auger, L O'Neill et al. Energies, 2017, 10(12): 1937. 

    4. [4]

      J Ma, Z Fang, Y Yan et al. Adv. Energy Mater., 2015, 5(16): 1500046. 

    5. [5]

      N Jayaprakash, J Shen, S S Moganty et al. Angew. Chem. Int. Ed., 2011, 50(26): 5904~5908. 

    6. [6]

      F Wu, J Chen, R Chen et al. J. Phys. Chem. C, 2011, 115(13): 6057~6063. 

    7. [7]

      Z Wei Seh, W Li, J J Cha et al. Nat. Commun., 2013, 4: 1331. 

    8. [8]

      X Ji, K T Lee, L F Nazar et al. Nat. Mater., 2009, 8(6): 500~506. 

    9. [9]

      P G Bruce, S A Freunberger, L J Hardwick et al. Nat. Mater., 2011, 11(1): 19~29. 

    10. [10]

      L Yuan, X Qiu, L Chen et al. J. Power Sources, 2009, 189(1): 127~132. 

    11. [11]

      S Walus, C Barchasz, R Bouchet et al. Adv. Energy Mater., 2015, 5: 1500165. 

    12. [12]

      Y S Su, Y Fu, T Cochell et al. Nat. Commun., 2013, 4(1): 2985. 

    13. [13]

      J H Kim, S Y Choi, M Choi et al. Adv. Energy Mater., 2016, 6(6): 1501902. 

    14. [14]

      Z Yang, D Choi, S Kerisit et al. J. Power Sources, 2009, 192(2): 588~598. 

    15. [15]

      J Wang, C Fu, X Wang et al. Electrochim. Acta, 2018, 292: 568~574. 

    16. [16]

      J Yao, T Mei, Z Cui et al. Chem. Eng. J., 2017, 330: 644~650. 

    17. [17]

      A Chen, W Liu, H Hu et al. J. Power Sources, 2018, 400: 23~30. 

    18. [18]

      X Ma, B Jin, H Wang et al. J. Electroanal. Chem., 2015, 736: 127~131. 

    19. [19]

      T L Greaves, C J Drummond. Chem. Soc. Rev., 2013, 42(3): 1096~1120. 

    20. [20]

      Y Sun, Y Zhao, Y Cui et al. Electrochim. Acta, 2017, 239: 56~64. 

    21. [21]

      X Qian, X Yang, L Jin et al. Mater. Res. Bull., 2017, 95: 402~408. 

    22. [22]

      Y Zhao, W Zhu, G Z Chen et al. J. Power Sources, 2016, 327: 447~456. 

    23. [23]

      N Liu, L Wang, Y Zhao et al. J. Alloys Compd., 2018, 769: 678~685. 

    24. [24]

      Q Pang, D Kundu, M Cuisinier et al. Nat. Commun., 2014, 5: 4759. 

    25. [25]

      S Yao, S Xue, Y Zhang et al. J. Mater. Sci-Mater. El., 2017, 28(10): 7264~7270. 

    26. [26]

      A A Gusev, E G Avvakumov, A Z Medvedev et al. Sci. Sintering, 2007, 39(1): 51~57. 

    27. [27]

      M Toyoda, T Yano, B Tryba et al. Appl. Catal. B, 2009, 88(1/2): 160~164. 

    28. [28]

      X Zhang, Y Lin, X Zhong et al. J. Mater. Sci-Mater. El., 2016, 27(5): 4861~4865. 

    29. [29]

      A Kitada, G Hasegawa, Y Kobayashi et al. J. Am. Chem. Soc., 2012, 134(26): 10894~10898. 

    30. [30]

      C Tang, D Zhou, Q Zhang et al. Mater. Lett., 2012, 79: 42~44. 

    31. [31]

      Y Zhang, S Yao, R Zhuang et al. J. Alloys Compd., 2017, 729: 1136~1144. 

    32. [32]

      Y Li, B Shi, W Liu et al. Electrochim. Acta, 2018, 260: 912~920. 

    33. [33]

      R Dang, X Ma, J Liu et al. Int. J. Hydrogen Energy, 2018, 43(41): 18754~18758. 

    34. [34]

      M Chen, Q Lu, S Jiang et al. Chem. Eng. J., 2018, 335: 831~842. 

    35. [35]

      J Zhu, R Pitcheri, T Kang et al. Ceram. Int., 2018, 44(14): 16837~16843. 

    36. [36]

      W Sun, X Ou, X Yue et al. Electrochim. Acta, 2016, 207: 198~206. 

    37. [37]

      J Liu, C Wang, B Liu et al. Mater. Lett., 2017, 195: 236~239. 

    38. [38]

      X Wen, K Xiang, Y Zhu et al. Mater. Lett., 2018, 229: 272~276. 

    39. [39]

      Y Chen, S Niu, W Lv et al. Chin. Chem. Lett., 2019, 30(2): 521~524. 

    40. [40]

      R Fang, S Zhao, Z Sun et al. Energy Storage Mater., 2018, 10: 56~61. 

    41. [41]

      L Fan, H Wu, X Wu et al. Electrochim. Acta, 2019, 295: 444~451. 

    42. [42]

      Y Chen, L Zheng, Y Fu et al. RSC Adv., 2016, 6(89): 85917~85923. 

    43. [43]

      R Yang, H Du, Z Lin et al. Carbon, 2019, 141: 258~265. 

    44. [44]

      C Zhao, L Liu, H Zhao et al. Nanoscale, 2014, 6(2): 882~888. 

    45. [45]

      H Yan, M Cheng, B Zhong et al.Ionics, 2016, 22(11): 1999~2006. 

    46. [46]

      W Li, Q Zhang, G Zheng et al. Nano Lett., 2013, 13(11): 5534~5540. 

    47. [47]

      H Tang, S Yao, J Mi et al. Mater. Lett., 2017, 186: 127~130. 

    48. [48]

      J Li, M Zhu, P Hu et al. Eur. J. Inorg. Chem., 2017, 2017(26): 3248~3252. 

    49. [49]

      M S Song, S C Han, H S Kim et al. J. Electrochem. Soc., 2004, 151(6): A791~A795.

    50. [50]

      Y Zhang, Y Zhao, A Yermukhambetova et al. J. Mater. Chem. A, 2013, 1(2): 295~301. 

    51. [51]

      R Yang, D Chen, B Ren et al. Mater. Lett., 2019, 235: 61~65. 

    52. [52]

      P Ji, T Zeng, X Hu et al. Solid State Ionics, 2018, 315: 52~58. 

    53. [53]

      K Shi, C Lai, X Liu et al. Energy Storage Mater., 2019, 17: 111~117. 

    54. [54]

      Y Wu, Q Xiao, S Huang et al. Mater. Chem. Phys., 2019, 221: 258~262. 

    55. [55]

      I A M Ousmane, R Li, C Wang et al. Micropor. Mesopor. Mater., 2018, 266: 276~282. 

    56. [56]

      T Ma, M Liu, T Huang et al. J. Power Sources, 2018, 398: 75~82. 

    57. [57]

      Y Zhang, Y Zhao, A Yermukhambetova et al. J. Mater. Chem. A, 2013, 1: 295~301. 

    58. [58]

      Y Zhang, Z Bakenov, Y Zhao et al. J. Power Sources, 2012, 208: 1~8. 

    59. [59]

      X Zhao, J K Kim, H J Ahn et al. Electrochim. Acta, 2013, 109: 145~152. 

    60. [60]

      X Liang, Y Liu, Z Wen et al. J. Power Sources, 2011, 196(16): 6951~6955. 

    61. [61]

      H J Noh, S T Myung, H G Jung et al. Adv. Funct. Mater., 2013, 23(8): 1028~1036. 

    62. [62]

      Y Fu, A Manthiram. RSC Adv., 2012, 2(14): 5927~5929. 

    63. [63]

      A Yermukhambetova, Z Bakenov, Y Zhang et al. J. Electroanal. Chem., 2016, 780: 407~415. 

    64. [64]

      Q Liu, Q Jiang, L Jiang et al. Appl. Surf. Sci., 2018, 462: 393~398. 

    65. [65]

      K Wu, B Shi, L Qi et al. Electrochim. Acta, 2018, 291: 24~30. 

    66. [66]

      D Zhang, Q Wang, Q Wang et al. Electrochim. Acta, 2015, 173: 476~482. 

    67. [67]

      X Gao, Y Shen, L Xing et al. Mater. Lett., 2016, 183: 413~416. 

    68. [68]

      D Xiao, C Lu, C Chen et al. Energy Storage Mater., 2018, 10: 216~222. 

    69. [69]

      X Li, L Zhang, Z Ding et al. J. Electroanal. Chem., 2017, 799: 617~624. 

  • 加载中
    1. [1]

      Yuanyuan JIANGFangfang TUYuhong ZHANGShi CHENJiayuan XIANGXinhui XIA . Preparation and electrochemical properties of high-stability cathode prelithiation additive. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1101-1111. doi: 10.11862/CJIC.20240441

    2. [2]

      Tao WangQin DongCunpu LiZidong Wei . Sulfur Cathode Electrocatalysis in Lithium-Sulfur Batteries: A Comprehensive Understanding. Acta Physico-Chimica Sinica, 2024, 40(2): 2303061-0. doi: 10.3866/PKU.WHXB202303061

    3. [3]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    4. [4]

      Yu GuoZhiwei HuangYuqing HuJunzhe LiJie Xu . Recent Advances in Iron-based Heterostructure Anode Materials for Sodium Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-0. doi: 10.3866/PKU.WHXB202311015

    5. [5]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    6. [6]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    7. [7]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    8. [8]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    9. [9]

      Zeqiu ChenLimiao CaiJie GuanZhanyang LiHao WangYaoguang GuoXingtao XuLikun Pan . Advanced electrode materials in capacitive deionization for efficient lithium extraction. Acta Physico-Chimica Sinica, 2025, 41(8): 100089-0. doi: 10.1016/j.actphy.2025.100089

    10. [10]

      Yingtong ShiGuotong XuGuizeng LiangDi LanSiyuan ZhangYanru WangDaohao LiGuanglei Wu . PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-0. doi: 10.1016/j.actphy.2025.100082

    11. [11]

      Yan'e LIUShengli JIAYifan JIANGQinghua ZHAOYi LIXinshu CHANG . MoO3/cellulose derived carbon aerogel: Fabrication and performance as cathode for lithium-sulfur battery. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1565-1573. doi: 10.11862/CJIC.20250054

    12. [12]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    13. [13]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    14. [14]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    15. [15]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    16. [16]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    17. [17]

      Shuhui Li Rongxiuyuan Huang Yingming Pan . Electrochemical Synthesis of 2,5-Diphenyl-1,3,4-Oxadiazole: A Recommended Comprehensive Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 357-365. doi: 10.12461/PKU.DXHX202407028

    18. [18]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    19. [19]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    20. [20]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

Metrics
  • PDF Downloads(26)
  • Abstract views(1524)
  • HTML views(352)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return