Citation: Niu Jiahua, Lu Minghua, Wang Yong. Research Progress in Detection of Seven Common Inedible Pigments in Food[J]. Chemistry, ;2020, 83(9): 805-812. shu

Research Progress in Detection of Seven Common Inedible Pigments in Food

  • Corresponding author: Lu Minghua, mhlu@henu.edu.cn
  • Received Date: 18 September 2019
    Accepted Date: 26 January 2020

Figures(2)

  • Edible pigments have important applications in the food industry because of they can improve the appearance of food and stimulate appetite. However, if inedible pigments are added to foods instead of edible pigments, there is a risk of carcinogenesis in humans. There are seven common inedible pigments in food: Auramine O, Basic Orange Ⅱ, Acid Orange Ⅱ, Sudan Red, Rhodamine B, Lead Chrome Green and Malachite Green. At present, the national standards for detecting these inedible pigments have not been established yet. This paper summarized a variety of analysis methods for the determination of common inedible pigments in the food industry so as to provide reference for food safety supervision and inspection.
  • 加载中
    1. [1]

       

    2. [2]

    3. [3]

    4. [4]

    5. [5]

      Wei L L, Deng J J, Kang T, et al. J. Food Eng. Technol., 2019, 8(1): 17~21. 

    6. [6]

    7. [7]

      Périata A, Bieria S, Mottier N. Food Chem., 2019, 1: 100009

    8. [8]

    9. [9]

      Kim T N T, Bui T T, Pham A T, et al. J. Anal. Methods Chem., 2019, 8639528.

    10. [10]

    11. [11]

      Yao J C, Quan Y N, Gao M, et al. J. Mater. Chem. C, 2019,7: 8199~8208. 

    12. [12]

    13. [13]

      Zhao C, Hong C Y, Lin Z Z, et al. Microchim. Acta, 2019, 186: 322. 

    14. [14]

      Uzcan F, Erbas Z, Soylak M. Int. J. Environ. Anal. Chem., 2019, 99(6): 595~605. 

    15. [15]

    16. [16]

      Lin Z Z, Li W J, Chen Q C, et al. Int. J. Polym. Anal. Charact., 2019, 24(2): 121~131. 

    17. [17]

      Tonica W W, Hardianti M F, Prasetya S A, et al. AIP Conference Proceedings, 2018, 2049(1): 020043.

    18. [18]

    19. [19]

      He T, Wang G N, Liu J X, et al. Anal. Methods, 2019, 288: 347~353.

    20. [20]

    21. [21]

    22. [22]

    23. [23]

      Chen J P, Zhu X S. Food Chem., 2016, 200: 10~15. 

    24. [24]

    25. [25]

    26. [26]

      Iammarino M, Mentana A, Centonze D, et al. Food Chem., 2019, 285: 1~9. 

    27. [27]

    28. [28]

      Yang Y J, Zhang J, Yin J, et al. J. Anal. Methods Chem., 2019, 3731028: 1~8.

    29. [29]

    30. [30]

    31. [31]

    32. [32]

      Gammoh S, Alu’Datt M H, Alhamad M N, et al. J. Food Sci., 2019, 84(2): 370~380. 

    33. [33]

    34. [34]

    35. [35]

    36. [36]

    37. [37]

    38. [38]

    39. [39]

      Wang X, Song G X, Wu W P, et al. Chromatographia, 2008, 68: 659~662. 

    40. [40]

    41. [41]

      Wang Y, Xiong Y Y, Qu J Y, et al. Sens. Actuat. B, 2016, 223: 501~508. 

    42. [42]

      Wang Y, Qu J H, Li S F, et al. Microchim. Acta, 2015, 182: 2277~2283. 

    43. [43]

      Yi Y H, Sun H, Zhu G B, et al. Anal. Methods, 2015, 7: 4965~4970. 

    44. [44]

      Heydari M, Ghoreishi S M, Khoobi A. Measurement, 2019, 142: 105~112. 

    45. [45]

      Zhao Y, Yang Y X, Cui L Y, et al. Biosens. Bioelectron., 2018, 117: 53~59. 

    46. [46]

      Meng J, Nie W Q, Zhang K, et al. ACS Appl. Mater. Interf., 2018, 10(16): 13652~13659. 

    47. [47]

      Alam A U, Qin Y H, Howlader M M R, et al. Sens. Actuat. B, 2018, 254: 896~909. 

    48. [48]

      Wang J D, Wang X Y, Tang H S, et al. Biosens. Bioelectron., 2018, 100: 1~7. 

    49. [49]

      Zhu X L, Wu G L, Wang C Z, et al. Measurement, 2018, 120: 206~212. 

    50. [50]

      Wang Q Q, Qin X F, Geng L P, et al. Nanomaterials, 2019, 9: 229. 

    51. [51]

      Zhou Y L, Li X Q, Pan Z H, et al. Food Anal. Methods, 2019, 12(5): 1246~1254. 

    52. [52]

      Yun M R, Choe J E, You J M, et al. Food Chem., 2015, 169: 114~119. 

    53. [53]

      Heydari M, Ghoreishi S M, Khoobi A. Food Chem., 2019, 283: 68~72. 

    54. [54]

      Rezaei B, Boroujeni M K, Ensafi A A. Sens. Actuat. B, 2016, 222: 849~856. 

    55. [55]

    56. [56]

    57. [57]

    58. [58]

    59. [59]

    60. [60]

    61. [61]

      Ou Y M, Pei L, Lai K Q, et al. Food Anal. Methods, 2017, 10(3): 565~574. 

    62. [62]

      Lai H S, Ma G R, Shang W J, et al. Chemosphere, 2019, 223: 465~473. 

    63. [63]

      Sikder M, Lead J R, Chandler G T, et al. Sci. Total Environ., 2018, 618: 597~607. 

    64. [64]

      Heleyel M, Elhami S. J. Sci. Food Agric., 2019, 99(4): 1919~1925. 

    65. [65]

      Ji R D, Zhao Z M, Yu X L, et al. Optik Int. J. Light Electron Optics, 2019, 181: 796~801. 

    66. [66]

      Bakheet A A A A, Zhu X S. Sci. J. Chem., 2017, 5(1): 1~7. 

    67. [67]

      Su A S, Zhong Q M, Chen Y Y, et al. Anal. Chim. Acta, 2018, 1023: 115~120. 

  • 加载中
    1. [1]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    2. [2]

      Wei Li Jinfan Xu Yongjun Zhang Ying Guan . 共价有机框架整体材料的制备及食品安全非靶向筛查应用——推荐一个仪器分析综合化学实验. University Chemistry, 2025, 40(6): 276-285. doi: 10.12461/PKU.DXHX202406013

    3. [3]

      Simin Fang Hong Wu Sizhe Sheng Lingling Li Yuxi Wang Hongchun Li Jun Jiang . The Food Kingdom Lecture Series: The Science behind Color. University Chemistry, 2024, 39(9): 177-182. doi: 10.12461/PKU.DXHX202402012

    4. [4]

      Linghua Chen . 基于双联动“三学”模式的食品专业分析化学教学改革. University Chemistry, 2025, 40(8): 78-91. doi: 10.12461/PKU.DXHX202409095

    5. [5]

      Mi Wen Baoshuo Jia Yongqi Chai Tong Wang Jianbo Liu Hailong Wu . Improvement of Fluorescence Quantitative Analysis Experiment: Simultaneous Determination of Rhodamine 6G and Rhodamine 123 in Food Using Chemometrics-Assisted Three-Dimensional Fluorescence Method. University Chemistry, 2025, 40(4): 390-398. doi: 10.12461/PKU.DXHX202405147

    6. [6]

      Wen Shi Jiuxing Jiang . 化学中的数学方法课程建设探索. University Chemistry, 2025, 40(6): 48-53. doi: 10.12461/PKU.DXHX202408088

    7. [7]

      Chunyang Zheng Shiyu Liu Nuo Yi Hong Shang . The Adventures in the Kingdom of Plant Pigments. University Chemistry, 2024, 39(9): 170-176. doi: 10.3866/PKU.DXHX202308085

    8. [8]

      Di Yang Jiayi Wei Hong Zhai Xin Wang Taiming Sun Haole Song Haiyan Wang . Rapid Detection of SARS-CoV-2 Using an Innovative “Magic Strip”. University Chemistry, 2024, 39(4): 373-381. doi: 10.3866/PKU.DXHX202312023

    9. [9]

      Hongwei Ma Hui Li . Three Methods for Structure Determination from Powder Diffraction Data. University Chemistry, 2024, 39(3): 94-102. doi: 10.3866/PKU.DXHX202310035

    10. [10]

      Feng Liang Desheng Li Yuting Jiang Jiaxin Dong Dongcheng Liu Xingcan Shen . Method Exploration and Instrument Innovation for the Experiment of Colloid ζ Potential Measurement by Electrophoresis. University Chemistry, 2024, 39(5): 345-353. doi: 10.3866/PKU.DXHX202312009

    11. [11]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    12. [12]

      Sifang Zhang Yanli Tan Yu Tao Jiaoyan Zhao Haihong Zhu . Exploration and Practice of Ideological and Political Cases in the Course of Chemistry History and Methodology. University Chemistry, 2024, 39(10): 377-388. doi: 10.12461/PKU.DXHX202312067

    13. [13]

      Yuyang Xu Ruying Yang Yanzhe Zhang Yandong Liu Keyi Li Zehui Wei . Research Progress of Aflatoxins Removal by Modern Optical Methods. University Chemistry, 2024, 39(11): 174-181. doi: 10.12461/PKU.DXHX202402064

    14. [14]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    15. [15]

      Xingyuan Lu Yutao Yao Junjing Gu Peifeng Su . Energy Decomposition Analysis and Its Application in the Many-Body Effect of Water Clusters. University Chemistry, 2025, 40(3): 100-107. doi: 10.12461/PKU.DXHX202405074

    16. [16]

      Yu'ang Liu Yuechao Wu Junyu Huang Tao Wang Xiaohong Liu Tianying Yan . Computation of Absolute Electrode Potential of Standard Hydrogen Electrode Using Ab Initio Method. University Chemistry, 2025, 40(3): 215-222. doi: 10.12461/PKU.DXHX202407112

    17. [17]

      Yue-Zhou ZhuKun WangShi-Sheng ZhengHong-Jia WangJin-Chao DongJian-Feng Li . Application and Development of Electrochemical Spectroscopy Methods. Acta Physico-Chimica Sinica, 2024, 40(3): 2304040-0. doi: 10.3866/PKU.WHXB202304040

    18. [18]

      Xue-Peng Zhang Yuchi Long Yushu Pan Jiding Wang Baoyu Bai Rui Ding . 定量构效关系方法学习探索:以钴卟啉活化氧气为例. University Chemistry, 2025, 40(8): 345-359. doi: 10.12461/PKU.DXHX202410107

    19. [19]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    20. [20]

      Qiuyu Xiang Chunhua Qu Guang Xu Yafei Yang Yue Xia . A Journey beyond “Alum”. University Chemistry, 2024, 39(11): 189-195. doi: 10.12461/PKU.DXHX202404094

Metrics
  • PDF Downloads(19)
  • Abstract views(2619)
  • HTML views(665)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return