Citation: Liu Jihong, Jin Kun, Tian Zhenhao, Luo Gen. Naphthalene Benzimidazole Derivatives: Syntheses and Structure Confirmations[J]. Chemistry, ;2020, 83(1): 64-69. shu

Naphthalene Benzimidazole Derivatives: Syntheses and Structure Confirmations

  • Received Date: 16 August 2019
    Accepted Date: 15 October 2019

Figures(8)

  • The naphthalene benzimidazole (NBI) with 1 and 4 monosubstituted derivatives 1~4 were synthesized and purified. The structure of compound 1 was analyzed in detail by using UV-Vis, IR, MS, 1H NMR, 13C NMR, DEPT, 1H-13C HSQC, 1H-13C HMBC techniques, and the positions of 1H and 13C NMR peaks of the derivatives were assigned. Quantum calculations were also applied by GIAO and CSGT methods to calculate the NMR shifts of NBI derivatives. The structure of the compounds were confirmed by various spectral techniques.
  • 加载中
    1. [1]

      Wojciechowski K. Dyes Pigments,1997, 33(2):149~165. 

    2. [2]

      Khosravi A, Moradian S, Gharanjig K, et al. Dyes Pigments, 2006, 69(1-2):79~92. 

    3. [3]

      Bojinov V, Grabchev I. Dyes Pigments, 2001, 51(1):57~61. 

    4. [4]

       

    5. [5]

      Li X L, Lin Y J, Yuan Y K, et al. Tetrahedron, 2011, 67(12):2299~2304. 

    6. [6]

      Chen Z, Liang X, Zhang H Y, et al. J. Med. Chem., 2010, 53(6):2589~2600. 

    7. [7]

      Yang Q, Yang P, Qian X H, et al. Bioorg. Med. Chem. Lett., 2008, 18(23):6210~6213. 

    8. [8]

      Zhang W, Chen M, Wu Y L, et al. Sci. Rep., 2015, 5:13693. 

    9. [9]

      Xie L J, Cui J N, Qian X H, et al. Bioorg. Med. Chem., 2011, 19(2):961~967. 

    10. [10]

      Yin H, Zhu W P, Xu Y F, et al. Eur. J. Med. Chem., 2011, 46(7):3030~3037. 

    11. [11]

      Jia H M, Xia S H, Feng H, et al. Org Biomol. Chem., 2018, 16(12):2074~2082. 

    12. [12]

      Dai Z R, Ge G B, Feng L, et al. J. Am. Chem. Soc., 2015, 137(45):14488~14495. 

    13. [13]

      Tang Y H, Kong X Q, Xu A, et al. Angew. Chem. Int. Ed., 2016, 55(10):3356~3359. 

    14. [14]

      Li B, Yu Y L, Xiang F Q, et al. ACS Appl. Mater. Interf., 2018, 10(19):16282~16290. 

    15. [15]

      Xing P F, Feng Y X, Niu Y M, et al. Chem. Eur. J., 2018, 24(22):5748~5753. 

    16. [16]

      Yang G X, Zhang J, Zhu S J, et al. Sens. Actuat. B., 2018, 261:51~57. 

    17. [17]

      Zhang Z, Fan J L, Zhao Y H, et al. ACS Sensors, 2018, 3(3):735~741. 

    18. [18]

      Jin Q, Feng L, Wang D D, et al. ACS Appl. Mater. Interf., 2015, 7(51):28474~28481. 

    19. [19]

      Dai Z R, Feng L, Jin Q, et al. Chem. Sci., 2017, 8(4):2795~2803. 

    20. [20]

       

    21. [21]

      Do T T, Takeda Y, Manzhos S, et al. J. Mater. Chem. C, 2018, 6(14):3774~3786. 

    22. [22]

      Kolosov D, Adamovich V, Djurovich P, et al. J. Am. Chem. Soc., 2002, 124(33):9945~9954. 

    23. [23]

      Tu G L, Mei C Y, Zhou Q G, et al. Adv. Funct. Mater., 2006, 16(1):101~106. 

    24. [24]

      Liu J, Zhou Q G, Cheng Y X, et al. Adv. Funct. Mater., 2006, 16(7):957~965. 

    25. [25]

      Mamada M, Perez-Bolivar C, Anzenbacher P. Org. Lett., 2011, 13(18):4882~4885. 

    26. [26]

      Mamada M, Perez-Bolivar C, Kumaki D, et al. Chem. Eur. J., 2014, 20(37):11835~11846. 

    27. [27]

      Jiang W, Tang J, Qi Q, et al. Dyes Pigments, 2009, 80(3):279~286. 

    28. [28]

      Xiao P, Dumur F, Graff B, et al. Macromolecules, 2014, 47(3):973~978. 

  • 加载中
    1. [1]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    2. [2]

      Jiatong Hu Qiyi Wang Ruiwen Tang Jiajing Feng . Photocatalytic Journey of Perylene Diimides in a Competitive Arena. University Chemistry, 2025, 40(5): 328-333. doi: 10.12461/PKU.DXHX202407015

    3. [3]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    4. [4]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    5. [5]

      Jinkang Jin Yidian Sheng Ping Lu Zhan Lu . Introducing a Website for Learning Nuclear Magnetic Resonance (NMR) Spectrum Analysis. University Chemistry, 2024, 39(11): 388-396. doi: 10.12461/PKU.DXHX202403054

    6. [6]

      Haiyang Jin Yonghai Hui Yongfei Zhang Lijun Gao Yun Wang . Application and Exploration of Nuclear Magnetic Resonance Spectrometer in Undergraduate Basic Laboratory Teaching. University Chemistry, 2025, 40(3): 245-250. doi: 10.12461/PKU.DXHX202406022

    7. [7]

      Haolin ZhanQiyuan FangJiawei LiuXiaoqi ShiXinyu ChenYuqing HuangZhong Chen . Noise Reduction of Nuclear Magnetic Resonance Spectroscopy Using Lightweight Deep Neural Network. Acta Physico-Chimica Sinica, 2025, 41(2): 2310045-0. doi: 10.3866/PKU.WHXB202310045

    8. [8]

      Supin Zhao Jing Xie . Understanding the Vibrational Stark Effect of Water Molecules Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 178-185. doi: 10.12461/PKU.DXHX202406024

    9. [9]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    10. [10]

      Tingbo Wang Yao Luo Bingyan Hu Ruiyuan Liu Jing Miao Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082

    11. [11]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    12. [12]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    13. [13]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    14. [14]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    15. [15]

      Yikai WangXiaolin JiangHaoming SongNan WeiYifan WangXinjun XuCuihong LiHao LuYahui LiuZhishan Bo . Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-0. doi: 10.3866/PKU.WHXB202406007

    16. [16]

      Yangrui XuYewei RenXinlin LiuHongping LiZiyang Lu . NH2-UIO-66 Based Hydrophobic Porous Liquid with High Mass Transfer and Affinity Surface for Enhancing CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-0. doi: 10.3866/PKU.WHXB202403032

    17. [17]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    18. [18]

      Fan YangZheng LiuDa WangKwunNam HuiYelong ZhangZhangquan Peng . Preparation and Properties of P-Bi2Te3/MXene Superstructure-based Anode for Potassium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2303006-0. doi: 10.3866/PKU.WHXB202303006

    19. [19]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    20. [20]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

Metrics
  • PDF Downloads(11)
  • Abstract views(774)
  • HTML views(105)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return