Citation: Zhang Congjian, Song Qingxiang, Xie Xiaoxue, Wang Ruolin, Liu Pengxiao, Liu Yu, Zhang Yulong, Zhang Ying, Zhang Xiaocan, An Chen. Preparation and Repair of T-type and KA Zeolite Membrane and Their Dehydration Performance for Natural Gas[J]. Chemistry, ;2020, 83(11): 1044-1049. shu

Preparation and Repair of T-type and KA Zeolite Membrane and Their Dehydration Performance for Natural Gas

  • Corresponding author: Zhang Ying, y.zhang@cup.edu.cn
  • Received Date: 9 January 2020
    Accepted Date: 28 February 2020

Figures(8)

  • T-type and KA zeolite membranes were synthesized on the alumina ceramics substrate and applied to model natural gas (mathane gas with 3.5% water vapor) dehydration. The model natural gas dehydration performance showed that the H2O/CH4 selectivities for model natural gas removal were 2.80 and 3.16 respectively for the T-type and KA zeolite membranes. Furthermore, the surface coating method was used to repair the defects in the zeolite membrane, thereby effectively improving its performance on the dehydration of model natural gas the H2O/CH4 selectivities up to 10.52 and 17.71, with the water vapor permeability coefficients of 104397 Barrer and 28200 Barrer and the methane loss rates of only 2% and 1%, respectively. The two repaired zeolite membranes had good stability.
  • 加载中
    1. [1]

    2. [2]

      Tabe-Mohammadi A. Sep. Sci. Technol., 1999, 34(10): 2095~2111.

    3. [3]

      Robeson L M. J. Membrane Sci., 2008, 320(1): 390~400.

    4. [4]

      Weh K, Noack M, Sieber I, et al. Micropor. Mesopor. Mater., 2002, 54(1/2): 27~36.

    5. [5]

      Masuda T, Fukumoto N, Kitamura M, et al. Micropor. Mesopor. Mater., 2001, 48(1/3): 239~245.

    6. [6]

      Lee S M, Lee Y H, Grace J R, et al. J. Porous Mater., 2019, 26(4): 1121~1129.

    7. [7]

      Mirfendeeski M, Sadrzadeh M, Mohmmadi T. Int. J. Green. Gas Control, 2008, 2(4): 531~538.

    8. [8]

      Cui Y, Kita H, Okamoto K. J. Mater. Chem., 2004, 14(5): 924~932.

    9. [9]

      Wang X, Yang Z, Yu C, et al. Micropor. Mesopor. Mater., 2014, 197(10): 17~25.

    10. [10]

      Okamoto K, Kita H, Horii K, et al. Ind. Eng. Chem. Res., 2001, 40(1): 163~175.

    11. [11]

      Wang H, Huang L, Holmberg B A, et al. Chem. Commun., 2002, 16(16): 1708~1709.

    12. [12]

      Ma Y H, Zhou Y, Poladi R, et al. Sep. Purif. Technol., 2001, 25(1): 235~240.

    13. [13]

      Shirazian S, Ashrafizadeh S N. J. Ind. Eng. Chem., 2015, 22: 132~137.

    14. [14]

      Shirazian S, Ashrafizadeh S N. Fuel, 2015, 148: 112~119.

    15. [15]

      Rad M D, Fatemi S, Mirfendereski S M. Chem. Eng. Res. Design, 2012, 90(10): 1687~1695.

    16. [16]

    17. [17]

      Mirfendereski M, Mohammadi T. Powder Technol., 2011, 206(3): 345~352.

    18. [18]

      Ji M, Gao X, Wang X, et al. J. Membrane Sci., 2018, (563): 460~469.

    19. [19]

    20. [20]

      Mirfendereski M, Mohammadi T. Powder Technol., 2011, 206(3): 345~352.

    21. [21]

    22. [22]

    23. [23]

    24. [24]

      Lin H, Thompson S M, Serbanescu-Martin A, et al. J. Membrane Sci., 2012, 413: 70~81.

  • 加载中
    1. [1]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    2. [2]

      Pei LiYuenan ZhengZhankai LiuAn-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 2406012-0. doi: 10.3866/PKU.WHXB202406012

    3. [3]

      Simin Fang Wei Huang Guanghua Yu Cong Wei Mingli Gao Guangshui Li Hongjun Tian Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023

    4. [4]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    5. [5]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    6. [6]

      Kexin YanZhaoqi YeLingtao KongHe LiXue YangYahong ZhangHongbin ZhangYi Tang . Seed-Induced Synthesis of Disc-Cluster Zeolite L Mesocrystals with Ultrashort c-Axis: Morphology Control, Decoupled Mechanism, and Enhanced Adsorption. Acta Physico-Chimica Sinica, 2024, 40(9): 2308019-0. doi: 10.3866/PKU.WHXB202308019

    7. [7]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    8. [8]

      Shanghua LiMalin LiXiwen ChiXin YinZhaodi LuoJihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003

    9. [9]

      Yue ZhangBao LiLixin Wu . GO-Assisted Supramolecular Framework Membrane for High-Performance Separation of Nanosized Oil-in-Water Emulsions. Acta Physico-Chimica Sinica, 2024, 40(5): 2305038-0. doi: 10.3866/PKU.WHXB202305038

    10. [10]

      Xin HanZhihao ChengJinfeng ZhangJie LiuCheng ZhongWenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 2404023-0. doi: 10.3866/PKU.WHXB202404023

    11. [11]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    12. [12]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    13. [13]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    14. [14]

      Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378

    15. [15]

      Lijun Yue Siya Liu Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005

    16. [16]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    17. [17]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    18. [18]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    19. [19]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    20. [20]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

Metrics
  • PDF Downloads(6)
  • Abstract views(922)
  • HTML views(206)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return