Citation: Wang Zhangyin, Wang Hanrui, Bi Chenglu, Zhou Quanfa. Progress in Analytical Methods of Brominated Dioxins[J]. Chemistry, ;2020, 83(12): 1098-1103. shu

Progress in Analytical Methods of Brominated Dioxins

  • Brominated dioxins (PBDD/Fs) are potential persistent organic pollutants. They are planar tricyclic aromatic compounds with characteristics such as teratogenicity, carcinogenesis and mutagenicity. At present, the research on analysis and detection of PBDD/Fs is a hot topic in the world, but there are few researches in China. Therefore, exploring the analysis and detection methods of PBDD/Fs is of great scientific significance for the further control of PBDD/Fs pollution. This paper summarizes the characteristics and the analytical methods of PBDD/Fs, focusing on the extraction, purification, instrument analysis and quality control of PBDD/Fs to better understand the current analysis and detection level of PBDD/Fs. We hope this article can provide a scientific and effective reference for the analysis and subsequent detection of PBDD/Fs.
  • 加载中
    1. [1]

       

    2. [2]

      Zhang M, Buekens A, Li X. J. Hazard. Mater., 2016, 304: 26~39. 

    3. [3]

      Birnbaum L S, Staskal D F, Diliberto J J. Environ. Int., 2004, 29(6): 855~860. 

    4. [4]

      Onodera J, Ueda Y, Choi J W, et al. Bunseki Kagaku, 2003, 52(3): 205~213. 

    5. [5]

      Li H R, Feng H L, Sheng G Y. Chemosphere, 2008, 70(4): 576~583. 

    6. [6]

      Zhou Y, Liu J. Environ. Sci. Pollut. Res., 2018, 25: 33082~33102. 

    7. [7]

      Wang D, Jiang G, Cai Z. Talanta, 2007, 72(2): 668~674. 

    8. [8]

      Choi J W, Onodera J, Kitamura K, et al. Chemosphere, 2003, 53(6): 637~643. 

    9. [9]

      Hagberg J. J. Chromatogr. A, 2009, 1216(3): 376~384. 

    10. [10]

      Onodera J, Ueda Y, Choi J W, et al. Bunseki Kagaku, 2003, 52: 505~512. 

    11. [11]

       

    12. [12]

      Hagberg J, Olsman H, Engwall M, et al. Environ. Int., 2006, 32(7): 851~857. 

    13. [13]

      Harless R L, Lewis R G. Chemosphere, 1989, 18: 201~208. 

    14. [14]

      D'Silva K, Fernandes A, Rose M. Crit. Rev. Environ. Control, 2004, 34(2): 141~207. 

    15. [15]

      Ashizuka Y, Nakagawa R, Tobiishi K, et al. J. Agric. Food Chem., 2005, 53(10): 3807~3813. 

    16. [16]

      Wang M S, Chen S J, Huang K L, et al. Chemosphere, 2010, 80(10): 1220~1226. 

    17. [17]

      Takahashi S, Sakai S, Watanabe I. Chemosphere, 2006, 64(2): 234~244. 

    18. [18]

      Someya M, Takahashi S. Environ. Sci. Technol., 2010, 44(21): 8330~8336. 

    19. [19]

      Wyrzykowska B, Tabor D, Gullett B K. Anal. Chem., 2009, 81(11): 4334~4342. 

    20. [20]

       

    21. [21]

      Zacs D, Rjabova J, Fernandes A, et al. Food Addit. Contam., 2016, 33(3): 460~472. 

    22. [22]

      Ebert J, Lorenz W, Bahadir M. Chemosphere, 1999, 39(6): 977~986. 

    23. [23]

      Choi J W, Onodera J, Kitamura K, et al. Chemosphere, 2003, 53: 637~643. 

    24. [24]

      Bjurlid F, Roos A, Ericson I J, et al. Chemosphere, 2018, 195: 11~20. 

    25. [25]

      Wang R, Tang T, Lu G, et al. Chem. Eng. J., 2008, 337: 333~341.

    26. [26]

      Watanabe K, Senthilkumar K, Masunaga S, et al. Environ. Sci. Technol., 2004, 38: 4071~4077. 

    27. [27]

      Pirard C, De Pauw, E, Focant J F. J. Chromatogr. A, 2003, 998: 169~181. 

    28. [28]

      Sjödin A, Carlsson H, Thuresson K, et al. Environ. Sci. Technol., 2001, 35: 448~454. 

    29. [29]

      Björklund J, Tollbäck P, Hiärne C et al. J. Chromatogr. A, 2004, 1041: 201~210. 

    30. [30]

      Jogsten I E, Hagberg J, Lindstr G, et al. Chemosphere, 2010, 78(2): 113~120. 

    31. [31]

      Ren M, Peng P, Cai Y, et al. Environ. Pollut., 2011, 159(5): 1375~1380. 

    32. [32]

      Wang M, Liu G R, Jiang X X, et al. Environ. Sci. Technol., 2016, 50(14): 7470~7479. 

    33. [33]

      Croes K, Colles A, Koppen G, et al. Talanta, 2013, 113(1): 99~105. 

    34. [34]

      Goto A, Tue N M, Someya M, et al. Environ. Sci. Technol., 2017, 51: 11771~11779. 

    35. [35]

      Fernandes A R, Rose M, Mortimer D, et al. J. Chromatogr. A, 2011, 1218(51): 9279~9287. 

    36. [36]

      Myers A L, Mabury S A, Reiner E J. Chemosphere, 2012, 87(9): 1063~1069. 

    37. [37]

      Organtini K L, Myers A L, Jobst K J, et al. Anal. Chem., 2015, 87(20): 10368~10377. 

    38. [38]

      Yu L P, Sheng G Y, Fu J M, et al. Environ. Sci. Technol., 2007, 41(16): 5641~5646. 

    39. [39]

      Li H R, Yu L P, Zhang S K, et al. Chin. J. Anal. Chem., 2008, 36(2): 150~156. 

    40. [40]

      Wang L C, Hsi H C, Wang Y F, et al. Environ. Pollut., 2010, 158(5): 1595~1602. 

    41. [41]

      Zhao X R, Cui T T, Guo R, et al. Anal. Chim. Acta, 2019, 1047: 71~80. 

  • 加载中
    1. [1]

      Haifeng Ma Xiaocong Tian Fengbin Wang Zhonghua Xi QingWang . Design of College Chemistry Experiment Based on Product Quality Control: Taking “Optimization of Ferrous Fumarate Synthesis Process” as an Example. University Chemistry, 2025, 40(7): 321-327. doi: 10.12461/PKU.DXHX202409056

    2. [2]

      Wanqun Hu Pingping Zhu Yuan Zheng Wanqun Zhang Wei Shao Hong Wu Qiang Zhou Kaiping Yang Xiang Sheng . Design and Practice of Ideological and Political Case Study in Instrumental Analysis Experiment Course: the Extraction and Structural Identification of Artemisinin. University Chemistry, 2024, 39(2): 203-207. doi: 10.3866/PKU.DXHX202310062

    3. [3]

      Zhuomin Zhang Lanrui Yang Baorong Zhang Gongke Li . 化学分析全英课程思政建设初探. University Chemistry, 2025, 40(8): 58-65. doi: 10.12461/PKU.DXHX202410010

    4. [4]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

    5. [5]

      Dong-Bing Cheng Junxin Duan Haiyu Gao . Experimental Teaching Design on Chitosan Extraction and Preparation of Antibacterial Gel. University Chemistry, 2024, 39(2): 330-339. doi: 10.3866/PKU.DXHX202308053

    6. [6]

      Tongyu Zheng Teng Li Xiaoyu Han Yupei Chai Kexin Zhao Quan Liu Xiaohui Ji . A DIY pH Detection Agent Using Persimmon Extract for Acid-Base Discoloration Popularization Experiment. University Chemistry, 2024, 39(5): 27-36. doi: 10.3866/PKU.DXHX202309107

    7. [7]

      Longping Li Jiali Li Tiange Qu Jiaqing Cai Chuyu Zhang Wenji Guo Qiulian Li Fan Luo . “可视化”助力从茶叶中提取咖啡因实验的关键步——升华. University Chemistry, 2025, 40(8): 272-276. doi: 10.12461/PKU.DXHX202409137

    8. [8]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    9. [9]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    10. [10]

      Tao Yang Kaijiao Duan Siyu Li Jing Wei Qingdi Yang Qian Wang . A Comprehensive and Innovative Chemical Experimental Teaching: Extraction and Identification of Tea Polyphenols from Pu'er Tea and the Application in Hand Cream Making. University Chemistry, 2024, 39(8): 270-275. doi: 10.3866/PKU.DXHX202312040

    11. [11]

      Shui Hu Houjin Li Zhenming Zang Lianyun Li Rong Lai . Integration of Science and Education Promotes the Construction of Undergraduate-to-Master’s Integration Experimental Courses: A Case Study on the Extraction, Separation and Identification of Artemisinin from Artemisia annua. University Chemistry, 2024, 39(4): 314-321. doi: 10.3866/PKU.DXHX202310063

    12. [12]

      Tao Cao Fang Fang Nianguang Li Yinan Zhang Qichen Zhan . Green Synthesis of p-Hydroxybenzonitrile Catalyzed by Spinach Extracts under Red-Light Irradiation: Research and Exploration of Innovative Experiments for Pharmacy Undergraduates. University Chemistry, 2024, 39(5): 63-69. doi: 10.3866/PKU.DXHX202309098

    13. [13]

      Huicheng Yang Qianhong Sun . Practice of Ideological and Political Education in Organic Chemistry Laboratory Courses under the OBE Framework: A Case Study of Berberine Extraction. University Chemistry, 2025, 40(5): 276-282. doi: 10.12461/PKU.DXHX202410091

    14. [14]

      Zhanming Zhang Can Zhu Juan Wang Yanghui Lin Mo Sun . Ideological and Political Cases in the Course of Organic Chemistry Experiment: Taking Caffeine Extraction from Tea Leaves Experiment as an Example. University Chemistry, 2025, 40(7): 34-41. doi: 10.12461/PKU.DXHX202409030

    15. [15]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    16. [16]

      Xiaoyang Li Xiaowei Huang Yimeng Zhang Huan Liu Shao Jin Junpeng Zhuang . Comprehensive Chemical Experiments on the Synthesis of 1,3-Dibromo-5,5-Dimethylhydantoin and Its Application as a Brominating Reagent. University Chemistry, 2025, 40(7): 286-293. doi: 10.12461/PKU.DXHX202408035

    17. [17]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    18. [18]

      Zhenli Sun Ning Wang Kexin Lin Qin Dai Yufei Zhou Dandan Cao Yanfeng Dang . Visual Analysis of Hotspots and Development Trends in Analytical Chemistry Education Reform. University Chemistry, 2024, 39(11): 57-64. doi: 10.12461/PKU.DXHX202403095

    19. [19]

      Zhaoyang Li Haiyan Zhao Yali Zhang Yuan Zhang Shiqiang Cui . Integration of Nobel Prize Achievements in Analytical Technology with College Instrumental Analysis Course. University Chemistry, 2025, 40(3): 269-276. doi: 10.12461/PKU.DXHX202405131

    20. [20]

      Liqiang Huang Peng Lin . 数-图分析法解释仪器分析实验课程教学中的难点. University Chemistry, 2025, 40(6): 353-359. doi: 10.12461/PKU.DXHX202407074

Metrics
  • PDF Downloads(16)
  • Abstract views(1773)
  • HTML views(413)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return