Citation: FAN Li-ping, XU Dan-dan. Effect of electrochemically modified anode on the performance of MFC[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(5): 628-633. shu

Effect of electrochemically modified anode on the performance of MFC

  • Corresponding author: FAN Li-ping, flpsd@163.com
  • Received Date: 1 September 2015
    Revised Date: 19 February 2016

    Fund Project: the Science and Technology Fund of Shenyang F14-207-600the National Natural Science Foundation of China 61143007

Figures(8)

  • NH4NO3 and (NH4)2S2O8 with different mass fractions were used as electrolyte to modify the anodic carbon cloth used in a double chamber microbial fuel cell. Using some restaurant wastewater as the anode substrate and the mixed solution of K3[Fe (CN)6] and NaCl as catholyte, the power generation performance and wastewater treatment effect of a microbial fuel cell with modified anode by different electrolytes were studied. The experimental results show that the microbial fuel cell with modified anode by NH4NO3 and (NH4)2S2O8 has a better power generation performance and sewage treatment effect. The power generating ability and the purifying effect of the microbial fuel cell achieve the optimal state with the steady current density of about 60 mA/m2 and the removal rate of COD of about 42.5% when the (NH4)2S2O8 of 4% mass fraction is used as the modified electrolyte of anode.
  • 加载中
    1. [1]

      RAHMAN D M, SAKHAWAT N B, AMIN R, AHMED F. Ensuring energy security in future: A study on different strategic plans and related environmental impacts[J]. J Sustainable Energy, 2012,3(1):71-75.  

    2. [2]

      PATIL S A, SURAKASI V P, KOUL S, IJMULWAR S, VIVEK A, SHOUCHE Y S, KAPADNIS B P. Electricity generation using chocolate industry wastewater and its treatment in activated sludge based microbial fuel cell and analysis of developed microbial community in the anode chamber[J]. Bioresour Technol, 2009,100(21):5132-5139. doi: 10.1016/j.biortech.2009.05.041

    3. [3]

      SHAH C K, YAGNIK B N. Bioelectricity production using microbial fuel cell[J]. Res J Biotechnol, 2013,8(3):84-90.  

    4. [4]

      RABAEY K, VERSTRAETE W. Microbial fuel cells: Novel biotechnology for energy generation[J]. Trends Biotechnol, 2005,23(6):956-964.  

    5. [5]

      SINGH D, PRATAP D, BARANWAL Y, KUMAR B, CHAUDHARY R K. Microbial fuel cells: A green technology for power generation[J]. Ann Biol Res, 2010,1(3):128-138.

    6. [6]

      PANDEY , B K, MISHRA V, AGRAWAL S. Production of bio-electricity during wastewater treatment using a single chamber microbial fuel cell[J]. Int J Eng, Sci Technol, 2011,3(4):42-47.  

    7. [7]

      HUGGINS T, FALLGREN P H, JIN S, REN Z J. Energy and performance comparison of microbial fuel cell and conventional aeration treating of wastewater[J]. J Microbial Biochem Technol, 2013(S6):1-5.  

    8. [8]

      ZHAO Yu, MA Yan, LI Ting, BO Xiao, WANG Jun-wen, LI Peng, ZHONG Li-ping, SUN Yan-ping. Treatment of sewage and synchronous electricity generation characteristics by microbial fuel cell[J]. J Fuel Chem Technol, 2014,42(4):481-486. doi: 10.1016/S1872-5813(14)60024-4 

    9. [9]

      OH S T, KIM J R, PREMIER G C, LEE T H, KIM C, SLOAN W T. Premier sustainable wastewater treatment: How might microbial fuel cells contribute[J]. Biotechnol Adv, 2010,28(6):871-881. doi: 10.1016/j.biotechadv.2010.07.008

    10. [10]

      DU Z, LI H, GU T. A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy[J]. Biotechnol Adv, 2007,25(5):464-482. doi: 10.1016/j.biotechadv.2007.05.004

    11. [11]

      LEE C Y, CHEN J H, CAI Y Y. Bioelectricity generation and organic removal in microbial fuel cells used for treatment of wastewater from fish-market[J]. J Environ Eng Manage, 2010,20(3):173-180.  

    12. [12]

      ZHOU Yu, LIU Zhong-liang, HOU Jun-xian, YANG Si-qi, LI Yan-xia, QIU Wen-ge. Microbial fuel cell anode modified by chemical oxidation[J]. CIESC J, 2015,66(3):1171-1177.  

    13. [13]

      XIE Qing, MAO Xiang-zhou, ZHANG Ling, YE Lu-sheng, PENG Shu-jun, DAN De-zhong. Study on effect of abiotic factors on electricity-generation and wastewater-treatment by microbial fuel cells[J]. Acta Chim Sin, 2010,68(19):1935-1941.  

    14. [14]

      YOU J, SANTORO C, GREENMAN J, MELHUISH C, CRISTIANI P, LI B, IEROPOULOS I. Micro-porous layer (MPL)-based anode for microbial fuel cells[J]. Int J Hydrogen Energ, 2014,39(36):21811-21818. doi: 10.1016/j.ijhydene.2014.07.136

    15. [15]

      GUO Yun-xia, LIU Jie, LIANG Jie-ying. Modification mechanism of the surface treated PAN based carbon fiber by electrochemical oxidation[J]. J Inorg Mater, 2009,24(4):853-858. doi: 10.3724/SP.J.1077.2009.00853

    16. [16]

      LIU Hong-peng, LÜ Chun-xiang, LI Yong-hong, YANG Yu, LI Kai-xi, HE Fu. Surface properties of electrochemically oxidized PAN-based carbon fibers[J]. New Carbon Mater, 2005,20(1):39-44.  

    17. [17]

      ZHOU Jun, WANG Xiu-jun. Research progress in anode modification of microbial fuel cells[J]. J Chem Ind Eng, 2014,35(1):56-60.  

    18. [18]

      WANG X, CHENG S, FENG Y, MERRILL M D, SAITO T, LOGAN B E. Use of carbon mesh anodes and the effect of different pretreatment methods on power production in microbial fuel cells[J]. Environ Sci Technol, 2009,43(17):6870-6874. doi: 10.1021/es900997w

    19. [19]

      FAN Li-ping, MIAO Xiao-hui. Study on the performance of microbial fuel cell for restaurant wastewater treatment and simultaneous electricity generation[J]. J Fuel Chem Technol, 2014,42(12):1506-1512.  

  • 加载中
    1. [1]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    2. [2]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    3. [3]

      Ping YeLingshuang QinMengyao HeFangfang WuZengye ChenMingxing LiangLibo Deng . Potential of Zero Charge-Mediated Electrochemical Capture of Cadmium Ions from Wastewater by Lotus Leaf-Derived Porous Carbons. Acta Physico-Chimica Sinica, 2025, 41(3): 2311032-0. doi: 10.3866/PKU.WHXB202311032

    4. [4]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    5. [5]

      Yong Zhou Jia Guo Yun Xiong Luying He Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109

    6. [6]

      Xuechen HuQiuying XiaFan YueXinyi HeZhenghao MeiJinshi WangHui XiaXiaodong Huang . Electrochemical Characteristics of LiNbO3 Anode Film and Its Applications in All-Solid-State Thin-Film Lithium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2309046-0. doi: 10.3866/PKU.WHXB202309046

    7. [7]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    8. [8]

      Yang MeiqingLu WangHaozi LuYaocheng YangSong Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 2310046-0. doi: 10.3866/PKU.WHXB202310046

    9. [9]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    10. [10]

      Qianwen HanTenglong ZhuQiuqiu LüMahong YuQin Zhong . Performance and Electrochemical Asymmetry Optimization of Hydrogen Electrode Supported Reversible Solid Oxide Cell. Acta Physico-Chimica Sinica, 2025, 41(1): 100005-0. doi: 10.3866/PKU.WHXB202309037

    11. [11]

      Lingbang QiuJiangmin JiangLibo WangLang BaiFei ZhouGaoyu ZhouQuanchao ZhuangYanhua CuiIn Situ Electrochemical Impedance Spectroscopy Monitoring of the High-Temperature Double-Discharge Mechanism of Nb12WO33 Cathode Material for Long-Life Thermal Batteries. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-0. doi: 10.1016/j.actphy.2024.100040

    12. [12]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    13. [13]

      Dong XiangKunzhen LiKanghua MiaoRan LongYujie XiongXiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027

    14. [14]

      Hong Yan Wenfeng Wang Keyin Ye Yaofeng Yuan . Organic Electrochemistry and Its Integration into Chemistry Teaching. University Chemistry, 2025, 40(5): 301-310. doi: 10.12461/PKU.DXHX202407027

    15. [15]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    16. [16]

      Shuhui Li Xucen Wang Yingming Pan . Exploring the Role of Electrochemical Technologies in Everyday Life. University Chemistry, 2025, 40(3): 302-307. doi: 10.12461/PKU.DXHX202406059

    17. [17]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    18. [18]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    19. [19]

      Kun Li Na Gao Shuangyan Huan Yuzhi Wang . Design of Ideological and Political Education for the Experiment of Detecting Cadmium with Anodic Stripping Voltammetry. University Chemistry, 2024, 39(2): 155-161. doi: 10.3866/PKU.DXHX202307068

    20. [20]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

Metrics
  • PDF Downloads(0)
  • Abstract views(1465)
  • HTML views(527)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return