Citation: LI Zhen-hua, LIU Chen, XIE Chun-fang, WANG Wei-han, WANG Bao-wei, MA Xin-bin. Influence of water on the methanation performance of Mo-based catalyst[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(6): 689-696. shu

Influence of water on the methanation performance of Mo-based catalyst

  • Corresponding author: WANG Wei-han, wangwh@tju.edu.cn
  • Received Date: 3 March 2017
    Revised Date: 21 April 2017

    Fund Project: the National High-Technology Research and Development Program of China 863 programthe National High-Technology Research and Development Program of China 2015AA050504the National Natural Science Foundation of China 21576203

Figures(8)

  • The effects of H2O on the performance of the sulfur-resistant Mo-based methanation catalysts were investigated by adding vapor into the reactant gas at the reaction conditions of 550℃, 5 500 h-1, 1.2% of H2S concentration. The results indicate that water caused irreversible deactivation of Mo-based catalyst supported on Al2O3, while additive Co and cerium-aluminum composite carrier can enhance the activity and improve the stability of the Mo-based catalyst for methanation of syngas. The promoter Co protects the active phase MoS2 of Mo-based catalyst, inhibits the irreversible deactivation caused by the addition of water. When the water content in reactant gas is increased, the water gas shift reaction increases and becomes the main reaction on catalysts, and the increase of water leads to further decrease of the catalyst activity and stability.
  • 加载中
    1. [1]

      MIAO Xing-wang, WU Feng, ZHANG Shu-yi. Development status of coal-to-natural gas technology[J]. Danfei Jishu, 2010,31(1):6-8.  

    2. [2]

      LIU Zhi-guang, GONG Hua-jun, YU Li-ming. SNG development in China[J]. Coal Chem Ind, 2009,37(2):5-9+17.  

    3. [3]

      SAITO M, ANDERSON R B. The activity of several molybdenum compounds for the methanation of CO[J]. J Catal, 1980,11(36):296-302.  

    4. [4]

      KOPYSCINSKI J, SCHILDHAUER T J, BIOLLAZ S M A. Production of synthetic natural gas (SNG) from coal and dry biomass-a technology review from 1950 to 2009[J]. Fuel, 2010,89(8):1763-1783. doi: 10.1016/j.fuel.2010.01.027

    5. [5]

      WANG Wei-han, LI Zhen-hua, WANG Bao-wei, XU Yan, MA Xin-bin. Recent advances in sulfur-resistant methanation[J]. CIESC J, 2015,66(9):3357-3366.  

    6. [6]

      GAO J, LIU Q, GU F, LIU B, ZHONG Z, SU F. Recent advances in methanation catalysts for the production of synthetic natural gas[J]. RSC Adv, 2015,5(29):22759-22776. doi: 10.1039/C4RA16114A

    7. [7]

      GAO Y L, FANG X C, CHENG Z M. Development and application of ex-situ presulfurization technology for hydrotreating catalysts in China[J]. Front Chem Sci Eng, 2011,5(3):287-296. doi: 10.1007/s11705-010-0529-2

    8. [8]

      WANG H Y, LI Z H, WANG E D, LIN C, SHANG Y G, DING G Z, MA X B, QIN S D, SUN Q. Effect of composite supports on the methanation activity of Co-Mo-based sulfur-resistant catalyst[J]. J Nat Gas Chem, 2012,21(6):767-773. doi: 10.1016/S1003-9953(11)60430-1

    9. [9]

      BADAWI M, PAUL J F, CRISTOL S, PAYEN E, ROMERO Y, RICHARD F, BRUNET S, LAMBERT D, PORTIER X, POPOV A, KONDRATIEVA E, GOUPIL J M, FALLAH J EL, GILSON J P, MARIEY L, TRAVERT A, MAUGÉ F. Effect of water on the stability of Mo and CoMo hydrodeoxygenation catalysts: A combined experimental and DFT study[J]. J Catal, 2011,282(1):155-164. doi: 10.1016/j.jcat.2011.06.006

    10. [10]

      WANG B W, DING G Z, SHANG Y G, LV J, WANG H Y, WANG E D, LI Z H, MA X B, QIN S D, SUN Q. Effects of MoO3 loading and calcination temperature on the activity of the sulphur-resistant methanation catalyst MoO3/ γ -Al2O3[J]. Appl Catal A: Gen, 2012,431-432(1):144-150.

    11. [11]

      LIN C, WANG H Y, LI Z H, WANG B W, MA X B, QIN S D, SUN Q. Effect of a promoter on the methanation activity of Mo-based sulfur-resistant catalyst[J]. Front Chem Sci Eng, 2013,7(1):88-94. doi: 10.1007/s11705-013-1301-1

    12. [12]

      WANG X T, LIU G S, YU J G, RODRIGUES A E. Preparation, characterization and deactivation studies of Co-Mo/ γ -Al2O3 deoxidizing catalyst[J]. Appl Catal A: Gen, 2004,270(1):143-149.

    13. [13]

      TOPSØE H, CLAUSEN B S, MASSOTH F E. A review of: "Hydrotreating catalysis science and technology"[J]. Fuel Sci Technol Int, 1996,14(10)1465. doi: 10.1080/08843759608947653

    14. [14]

      KUHN M, RODRIGUEZ J A. Photoemission studies of S/Co/Mo(110) and S/Ni/Mo(110) surfaces: Co-and Ni-promoted sulfidation of Mo(110)[J]. Surf Sci, 1996,355(1/3):85-99.  

    15. [15]

      KOOYMAN P J, VAN VEEN J A R V. The detrimental effect of exposure to air on supported MoS2[J]. Catal Today, 2008,130(1):135-138. doi: 10.1016/j.cattod.2007.07.019

    16. [16]

      TOPSØE H. The role of Co-Mo-S type structures in hydrotreating catalysts[J]. Appl Catal A: Gen, 2007,322:3-8. doi: 10.1016/j.apcata.2007.01.002

    17. [17]

      WANG B W, SHANG Y G, DING G Z, LV J, WANG H Y, WANG E D, LI Z H, MA X B, QIN S D, SUN Q. Effect of ceria-alumina composite support on the Mo-based catalyst sulfur-resistant activity for synthetic natural gas process[J]. React Kinet Mech Catal, 2012,106(2):495-506. doi: 10.1007/s11144-012-0452-2

    18. [18]

      JIANG M H, WANG B W, YAO Y Q, WANG H Y, LI Z H, MA X B, QIN S D, SUN Q. The role of the distribution of Ce species on MoO3/CeO2-Al2O3 catalysts in sulfur-resistant methanation[J]. Catal Commun, 2013,35:32-35. doi: 10.1016/j.catcom.2013.02.008

    19. [19]

      FERREIRA A P, ZANCHET D, ARAUJO J C S, LIBERATORI J W C, SOUZA-AGUIAR E F, NORONHA F B, BUENO J M C. The effects of CeO2 on the activity and stability of Pt supported catalysts for methane reforming, as addressed by in situ temperature resolved XAFS and TEM analysis[J]. J Catal, 2009,263(2):335-344. doi: 10.1016/j.jcat.2009.02.026

    20. [20]

      MYOUNG Y K, SEUNG B H, DONG J K, CHANGDAE B, EUN D P. CO methanation over supported Mo catalysts in the presence of H2S[J]. Catal Commun, 2013,35(17):68-71.

  • 加载中
    1. [1]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    2. [2]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    3. [3]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    4. [4]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    5. [5]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    6. [6]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    7. [7]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    8. [8]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    9. [9]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    10. [10]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    11. [11]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    12. [12]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    13. [13]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    14. [14]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    15. [15]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    16. [16]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    17. [17]

      Fangxuan Liu Ziyan Liu Guowei Zhou Tingting Gao Wenyu Liu Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071

    18. [18]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    19. [19]

      Lijuan Liu Xionglei Wang . Preparation of Hydrogels from Waste Thermosetting Unsaturated Polyester Resin by Controllable Catalytic Degradation: A Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 313-318. doi: 10.12461/PKU.DXHX202403060

    20. [20]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

Metrics
  • PDF Downloads(4)
  • Abstract views(996)
  • HTML views(153)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return