Citation: Luo Shajie, Wang Yanying, Rao Hanbing, Wang Xianxiang. Advances in Research and Application of Artificial Enzymes[J]. Chemistry, ;2017, 80(7): 642-650. shu

Advances in Research and Application of Artificial Enzymes

  • Corresponding author: Wang Xianxiang, xianxiangwang@hotmail.com
  • Received Date: 11 October 2016
    Accepted Date: 20 March 2017

Figures(5)

  • Owning to its good stability, easy preparation, high environmental tolerance, artificial enzymes had been used widely to improve the activity and the yield of natural enzymes. In this paper, according to the classification of artificial enzymes, the present progresses in the study of traditional mimic enzymes and nanomaterials mimic enzymes had been reviewed. The advantages and disadvantages of the artificial enzymes were discussed in detail, and its prospects were also described.
  • 加载中
    1. [1]

    2. [2]

      D J Cram. Science, 1974, 183:803~809.

    3. [3]

      J M Lehn. Angew. Chem. Int. Ed., 1988, 27:89~112.

    4. [4]

    5. [5]

    6. [6]

      R Breslow. Chem. Soc. Rev, 1972, 1(4):553~580.

    7. [7]

      M L Bender, M Komiyama. Cyclodextrin Chemistry. Springer Science & Business Media, 2012.

    8. [8]

      R Breslow, J B Doherty, G Guillot et al. J. Am. Chem. Soc., 1978, 100:3227~3229.

    9. [9]

    10. [10]

      W Al-Maksoud, S Menuel, M Jahjah et al. Appl. Catal. A, 2014, 469(17):250~258.

    11. [11]

    12. [12]

    13. [13]

      Y H Zhou, M Zhao, Z W Mao et al. Chem. Eur. J., 2008, 14:7193~7201.

    14. [14]

      S Letort, D Mathiron, T Grel et al. Chem. Commun., 2015, 51:2601~2604.

    15. [15]

    16. [16]

    17. [17]

      D Mansuy. Pure. Appl. Chem., 1987, 59(6):759~770.

    18. [18]

      P E Ellis, J E Lyons. Coord. Chem. Rev., 1990, 105:181~193.

    19. [19]

      S I Murahashi, T Naota, N Komiya. Tetrahed. Lett., 1995, 36(44):8059~8062.

    20. [20]

    21. [21]

      M Motsenbocker, J Y Ichimori, K Kondo. Anal. Chem., 1993, 65:397~402.

    22. [22]

    23. [23]

    24. [24]

    25. [25]

      C M Chapmana, J M Pruneaua, C A Laveracka et al. Appl. Catal. A, 2016, 510:204~215.

    26. [26]

      N Xu, J P Lei, Q B Wang et al. Talanta, 2016, 150:661~665.

    27. [27]

    28. [28]

      G Wulff, A Sarhan. Angew. Chem. Int. Ed., 1972, 11:341~344.

    29. [29]

      G Wulff, A Sahan, K Zabrocki. Tetrahed. Lett., 1973, 44(4):4329~4332.

    30. [30]

      G Vlatakis, L I Andersson, R Muller et al. Nature, 1993, 361:645~647.

    31. [31]

    32. [32]

      E Toorisaka, K Uezu, M Goto. Biochem. Eng. J., 2003, 14(2):85~91.

    33. [33]

      B Sellergren, R N Karmalkar, K J Shea. J. Org. Chem., 2000, 65(13):4009~4027.

    34. [34]

    35. [35]

      P Scrimin, P Tecilla, U Tonellata. J. Org. Chem., 1994, 59(1):18~24.

    36. [36]

      J Q Xie, G X Chen, H Yan et al. J. Dispers. Sci. Technol., 2007, 28:505~510.

    37. [37]

    38. [38]

    39. [39]

    40. [40]

    41. [41]

      P Molenveld, F J Engbersen, H Kooijman et al. J. Am. Chem. Soc., 1998, 120(27):6726~6737.

    42. [42]

    43. [43]

    44. [44]

      R J Aitken, M Q Chaudhry, A B A Boxall et al. Occup. Med., 2006, 56:300~306.

    45. [45]

      C N R Rao, A K Cheetham. J. Mater. Chem., 2001, 11:2887~2894.

    46. [46]

      L Z Gao, J Zhang, L Nie et al. Nanotechnology, 2007, 2(10):577~583.

    47. [47]

      H Wei, E Wang. Anal. Chem., 2008, 80:2250~2254.

    48. [48]

      Y L Wang, Y J Sun, H C Dai et al. Sensor Actuat. B, 2016, 236:621~626.

    49. [49]

      F Chen, S Xie, X Huang et al. J. Hazard. Mater., 2017, 322:152~162.

    50. [50]

      M I Kim, J Shim, T Li et al. Chem. Eur. J., 2011, 17:10700~10707.

    51. [51]

      C Liu, C Yu, W Tseng. Anal. Chim. Acta, 2012, 745:143~148.

    52. [52]

      Z Zhang, X Wang, X Yang. Analyst, 2011, 136:4960~4965.

    53. [53]

      Y Ma, Z Zhang, C Ren et al. Analyst, 2012, 137:485~489.

    54. [54]

      K S Park, M I Kim, D Y Cho et al. Small, 2011, 7:1521~1525.

    55. [55]

      L Gao, K M Giglio, J L Nelson et al. Nanoscale, 2014, 6:2588~2593.

    56. [56]

      H Niu, D Zhang, S Zhang et al. J. Hazard. Mater., 2011, 190:559~565.

    57. [57]

      N Wang, L Zhu, M Wang et al. Ultrason. Sonochem., 2010, 17:78~83.

    58. [58]

      D Zhang, Y Zhao, Y Gao et al. J. Mater. Chem. B, 2013, 1:5100~5107.

    59. [59]

      S Zhang, X Zhao, H Niu et al. J. Hazard. Mater., 2009, 167:560.~566

    60. [60]

      F F Peng, Y Zhang, N Gu. Chem. Lett., 2008, 19, 730~733.

    61. [61]

      S Nath, C Kaittanis, V Ramachandran et al. Chem. Mater., 2009, 21, 1761~1767.

    62. [62]

      F Q Yu, Y Z Huang, A J Cole et al. Biomaterials, 2009, 30:4716~4722.

    63. [63]

      X He, L F Tan, D Chen et al. Chem. Commun., 2013, 49:4643~4645.

    64. [64]

      J Qian, X W Yang, L Jiang et al. Sensor. Actuat. B, 2014, 201:160~166.

    65. [65]

      H F Zhang, L Ma, P L Li et al. Biosens. Bioelectron., 2016, 83:343~350.

    66. [66]

      Z Yang, Y Q Chai, R Yuan et al. Sensor. Actuat. B, 2014, 193:461~466.

    67. [67]

      Q An, C Y Sun, D Li et al. ACS Appl. Mater. Int., 2013, 5:13248~13257.

    68. [68]

      Z Wan, J Wang. J. Hazard. Mater., 2017, 324:653~664.

    69. [69]

      B Thokchom, P P Qiu, M C Cui. Ultrason. Sonochem., 2017, 34:262~272.

    70. [70]

      A Gogoi, M Navgire, K C Sarma et al. Chem. Eng. J., 2017, 311:153~162.

    71. [71]

      Y Jv, B X Li, R Cao. Chem. Commun., 2010, 46:8017~8019.

    72. [72]

      L H Jin, L Shang, S J Guo et al. Biosens. Bioelectron., 2011, 26:1965~1969.

    73. [73]

      Wang G L, Jin L Y, Dong Y M et al. Biosens. Bioelectron., 2015, 64:523~529.

    74. [74]

      B Xiong, R L Xu, R Zhou et al. Talanta, 2014, 120:262~267.

    75. [75]

      L Zhan, C Li, W Wu et al. Chem. Commun., 2014, 50:11526~11528.

    76. [76]

      Z Si, R Li, X Liu et al. Biosens. Bioelectron., 2017, 92:457~464..

    77. [77]

      Y Li, Q Ma, Z Liu et al. Anal. Chim. Acta, 2014, 840:68~74.

    78. [78]

      X Z Zhang, Y Zhou, W Zhang et al. Colloid. Surf. A, 2015, 490:291~299.

    79. [79]

      J B Liu, X N Hu, S A Hou et al. Sensor Actuat. B, 2012, 166~167:708~714.

    80. [80]

      C W Tseng, H Y Chang, J Y Chang et al. Nanoscale, 2012, 4:6823~6830.

    81. [81]

      Y Zhang, Y F Zhang, C L Xu et al. Biosen. Bioelectron., 2013, 43:205~210.

    82. [82]

      Y Wang, Y Zhang, T Yan et al. Biosens. Bioelectron., 2016, 80(65):640~646.

    83. [83]

      C W Lien, C C Huang, H T Chang et al. Chem. Commun., 2012, 48:7952~7954.

    84. [84]

      Y Tao, Y Lin, Z Huang et al. Adv. Mater., 2013, 25:2594~2599.

    85. [85]

      K Shao, C J Zhang, S Y Ye et al. Sensor Actuat. B, 2017, 240:586~594.

    86. [86]

      M S Mathew, A Baksi, T Pradeep et al. Biosens. Bioelectron., 2016, 81:68~74.

    87. [87]

      Y Yang, H Zhang, C Huang et al. Biosens. Bioelectron., 2016, 89:461~467.

    88. [88]

      Y H Chiu, Y J Hsu. Nano Energy, 2017, 31:286~295.

    89. [89]

      Y Tao, E Ju, J Ren et al. Adv. Mater., 2015, 27:1097~1104.

    90. [90]

      X X Wang, S Huang, Z Shan et al. Chin. Sci. Bull., 2009,54:1176~1181.

    91. [91]

      X X Wang, S Wang, W S Yang et al. Acta Chim. Sin., 2009,67:54~58.

    92. [92]

      X Wang, Y Lv, X Hou. Talanta, 2011, 84:382~386.

    93. [93]

      X X Wang, Z K Yang, Z San et al. Sci. China Chem., 2010, 53:1718~1722.

    94. [94]

      X Wang, P Wu, Y Lv et al. Microchem. J., 2011, 99:327~331.

    95. [95]

      X Wang, Y Wang, H Rao et al. J. Brazil. Chem. Soc., 2012,23:2011~2015.

    96. [96]

      X X Wang, Q Wu, Z Shan et al. Biosens. Bioelectron., 2011, 26:3614~3619.

    97. [97]

      K S Novoselov, A K Geim, S V Morozov et al. Science, 2004, 306(5696):666~669.

    98. [98]

      Y J Song, K G Qu, C Zhao et al. Adv. Mater., 2010, 22(19):2206~2210.

    99. [99]

      Y Li, Y Gu, B Zheng et al. Talanta, 2016, 162:80~89.

    100. [100]

      A Zheng, Z Cong, J Wang et al. Biosens. Bioelectron., 2013, 49:519~524.

    101. [101]

      Y Guo, L Deng, J Li et al. ACS Nano, 2011, 5:1282~1290.

    102. [102]

      P D Nguyen, V T Cong, C Baek et al. Biosens. Bioelectron., 2015, 89:666~672.

    103. [103]

      Y J Song, X H Wang, C Zhao et al. Chem. Eur. J., 2010, 16(12):3617~3621.

    104. [104]

      R J Cui, Z D Han, J J Zhu. Chem. Eur. J., 2011, 17(34):9377~9384.

    105. [105]

      X Y Xu, R Ray, Y L Gu et al. J. Am. Chem. Soc., 2004, 126(40):12736~12737.

    106. [106]

      X H Wang, K G Qu, B L Xu et al. Nano. Res., 2011, 4(9):908~920.

    107. [107]

      A Asati, C Kaittanis, S Santra et al. Anal. Chem., 2011, 83:2547~2553.

    108. [108]

      J S Mu, X Zhao, J Li et al. Mater. Sci. Eng. C, 2017, 74:434~442.

    109. [109]

      M Ornatska, E Sharpe, D Andreescu et al. Anal. Chem., 2011, 83:4273~4280.

    110. [110]

      Y Li, X He, J J Yin et al. Angew. Chem. Int. Ed., 2015, 54:1832~1835.

    111. [111]

      J S Mu, Y Wang, M Zhao. Chem. Commun., 2012, 48:2540~2542.

    112. [112]

      W Yang, J Hao, Z Zhang et al. New J. Chem., 2015, 39(11):8802~8806.

    113. [113]

      J Dong, L Song, J J Yin et al. ACS. Appl. Mater. Int., 2014, 6:1959~1970.

    114. [114]

      J S Mu, L Zhang, M Zhao et al. ACS. Appl. Mater. Int., 2014, 6:7090~7098.

    115. [115]

      W Qin, L Su, C Yang et al. J. Agric. Food Chem., 2014, 62:5827~5834.

    116. [116]

      Y Dong, Y Chi, X Lin et al. Phys. Chem. Chem. Phys., 2011, 13:6319~6324.

    117. [117]

      Y Wang, X Zhang, Z Luo et al. Nanoscale,2014, 6:12340~12344.

    118. [118]

      W Li, B Chen, H Zhang et al. Biosens. Bioelectron., 2015, 66:251~258.

    119. [119]

      A Hu, Y H Liu, H H Deng et al. Biosens. Bioelectron., 2014, 61:374~378.

    120. [120]

      Q Liu, Q Y Jia, R R Zhu et al. Mater. Sci. Eng. C, 2014, 42:177~184.

    121. [121]

      W Shi, W B Shi, X D Zhang et al. Chem. Commun., 2011, 47:10785~10787.

    122. [122]

      X Liu, Q Wang, H H Zhao et al. Analyst, 2012, 137:4552~4558.

  • 加载中
    1. [1]

      Hongsheng Tang Yonghe Zhang Dexiang Wang Xiaohui Ning Tianlong Zhang Yan Li Hua Li . A Wonderful Journey through the Kingdom of Hazardous Chemicals. University Chemistry, 2024, 39(9): 196-202. doi: 10.12461/PKU.DXHX202403098

    2. [2]

      Tiantian Zheng Huiyi Wang Huimin Li Xuanhe Liu Hong Shang . Anti-Counterfeiting National Salvation Chronicle of 006. University Chemistry, 2024, 39(9): 254-258. doi: 10.3866/PKU.DXHX202307032

    3. [3]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    4. [4]

      Lei Qin Kai Guo . Application of Generative Artificial Intelligence in the Simulation of Acid-Base Titration Images. University Chemistry, 2025, 40(9): 11-18. doi: 10.12461/PKU.DXHX202408123

    5. [5]

      Quanliang Chen Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133

    6. [6]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    7. [7]

      Yerong Chen Bingbin Yang Xinglei He Yuqi Lin Keyin Ye . Enzyme-Directed Evolution Enables Bioconversion of Organosilicon Compounds. University Chemistry, 2025, 40(10): 121-129. doi: 10.12461/PKU.DXHX202411054

    8. [8]

      Xiaochen ZhangFei YuJie Ma . Cutting-Edge Applications of Multi-Angle Numerical Simulations for Capacitive Deionization. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-0. doi: 10.3866/PKU.WHXB202311026

    9. [9]

      Jing Du Xi Yu Xiaofei Ma Wentao Zhao . Artificial Intelligence & Chemistry Course Construction. University Chemistry, 2024, 39(11): 65-71. doi: 10.12461/PKU.DXHX202403072

    10. [10]

      Jing Tan Bo Zheng Lingyan Gao . Application of Crown Ether-Based Artificial Ion Transporters. University Chemistry, 2026, 41(2): 232-237. doi: 10.12461/PKU.DXHX202501010

    11. [11]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    12. [12]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    13. [13]

      Pengli GUANRenhu BAIXiuling SUNBin LIU . Trianiline-derived aggregation-induced emission luminogen probe for lipase detection and cell imaging. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1817-1826. doi: 10.11862/CJIC.20250058

    14. [14]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    15. [15]

      Xintian Xie Sicong Ma Yefei Li Cheng Shang Zhipan Liu . Application of Machine Learning Potential-based Theoretical Simulations in Undergraduate Teaching Laboratory Course Design. University Chemistry, 2025, 40(3): 140-147. doi: 10.12461/PKU.DXHX202405164

    16. [16]

      Xiaodong Chen Yumin Zhang . An Improved Simulated Annealing Algorithm for Predicting the Molecular Formulas of Organic Compounds. University Chemistry, 2025, 40(9): 19-24. doi: 10.12461/PKU.DXHX202408095

    17. [17]

      Heng Zhang Ying Ma Shiling Yuan . Machine Learning-based Prediction of Antifouling Performance in Polymer Materials: An Integrated Molecular Simulation Experiment. University Chemistry, 2026, 41(1): 346-353. doi: 10.12461/PKU.DXHX202506015

    18. [18]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    19. [19]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    20. [20]

      Yang Li Jiachen Li Daidi Fan . 二硫化钼纳米片的制备及其纳米酶性能探究——介绍一个大学化学综合实验. University Chemistry, 2025, 40(8): 233-240. doi: 10.12461/PKU.DXHX202410016

Metrics
  • PDF Downloads(138)
  • Abstract views(6517)
  • HTML views(2620)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return