Citation: LU Xue-ting, PU Yan-feng, LI Lei, ZHAO Ning, WANG Feng, XIAO Fu-kui. Preparation of metal-organic frameworks Cu3(BTC)2 with amino-functionalization for CO2 adsorption[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(3): 338-343. shu

Preparation of metal-organic frameworks Cu3(BTC)2 with amino-functionalization for CO2 adsorption

  • Corresponding author: ZHAO Ning, zhaoning@sxicc.ac.cn WANG Feng, wangf@sxicc.ac.cn
  • Received Date: 8 November 2018
    Revised Date: 24 December 2018

    Fund Project: The project was supported by the National Natural Science Foundation of China (21306217, 21776294), Coal-Based Science and Technology Project of Shanxi Province (MD2014-09) and Natural Science Foundation of Shanxi Province (201601D102006, 201801D121070)Natural Science Foundation of Shanxi Province 201801D121070The project was supported by the National Natural Science Foundation of China 21776294The project was supported by the National Natural Science Foundation of China 21306217Natural Science Foundation of Shanxi Province 201601D102006Coal-Based Science and Technology Project of Shanxi Province MD2014-09

Figures(9)

  • The metal-organic framework of Cu3(NH2BTC)2 was synthesized by solvothermal method with the prepared grafted amine-based trimesic acid as organic ligand. The synthesized adsorbent was characterized by XRD, N2 adsorption-desorption, thermogravimetry, FT-IR and in-situ FT-IR. The performance of the CO2 adsorption was studied by the breakthrough curve based on the fixed-bed reactor. The results showed that the amine groups had been successfully grafted into the skeleton of Cu3(BTC)2. The CO2 adsorption capacity of Cu3(NH2BTC)2 was improved to 1.41 mmol/g at 10 kPa and 50 ℃. The improvement of CO2 uptake might due to the effect of both the physical and chemical adsorption of CO2.
  • 加载中
    1. [1]

      LIU Zhi, HUANG Shao-peng. Multiple time scales of variations of atmospheric CO2 concentration and global climate[J]. Quat Sci, 2015,35(6):1458-1470.  

    2. [2]

      D'ALESSANDRO D M, SMIT B, LONG J R. Carbon dioxide capture:Prospects for new materials[J]. Angew Chem Int Ed, 2010,49(35):6058-6082. doi: 10.1002/anie.201000431

    3. [3]

      LEE S-Y, PARK S-J. A review on solid adsorbents for carbon dioxide capture[J]. J Ind Eng Chem, 2015,23:1-11. doi: 10.1016/j.jiec.2014.09.001

    4. [4]

      ZHANG Z J, ZHAO Y G, GONG Q H, LI Z, LI J. MOFs for CO2 capture and separation from flue gas mixtures:The effect of multifunctional sites on their adsorption capacity and selectivity[J]. Chem Commun, 2013,49(7):653-661. doi: 10.1039/C2CC35561B

    5. [5]

      SUMIDA K, ROGOW D L, MASON J S, MCDONALD T M, BLOCH E D, HERM Z R, BAE T H, LONG J R. Carbon dioxide capture in metal-organic frameworks[J]. Chem Rev, 2012,112(2):724-781. doi: 10.1021/cr2003272

    6. [6]

      LI J R, SCULLEY J, ZHOU H C. Metal-organic frameworks for separations[J]. Chem Rev, 2012,112(2):869-932. doi: 10.1021/cr200190s

    7. [7]

      WANG Q M, SHEN D M, BVLOW M, LAU M L, DENG S G, FITCH F R, LEMCOFF N O, SEMANSCIN J. Metallo-organic molecular sieve for gas separation and purification[J]. Microporous Mesoporous Mater, 2002,55(2):217-230. doi: 10.1016/S1387-1811(02)00405-5

    8. [8]

      CHUI S S Y, LO S M F, CHARMANT J P H, ORPEN A G, WILLⅡAMS I D. A Chemically functionalizable nanoporous material[Cu3(TMA)2(H2O)3]n[J]. Science, 1999,283(5405):1148-1150. doi: 10.1126/science.283.5405.1148

    9. [9]

      KRKLJUS I, HIRSCHER M. Characterizataion of hydrogen/deutetrium adsorption sites in nanoporous Cu-BTC by low-temperature thermal-desorption mass spectroscopy[J]. Microporous Mesoporous Mater, 2011,142(2/3):725-729.  

    10. [10]

      ZHU Chen-ming. Preparation and evaluation of hybrid MOFs for CO2 Adsorption[D]. Shanghai: Shanghai University, 2016.

    11. [11]

      YE S, JIANG X, RUAN L W, LIU B, WANG Y M, ZHU J F, QIN L G. Post-combustion CO2 capture with the HKUST-1 and MIL-101(Cr) metal-organic frameworks:Adsorption, separation and regeneration investigations[J]. Microporous Mesoporous Mater, 2013,179:191-197. doi: 10.1016/j.micromeso.2013.06.007

    12. [12]

      SU X, BROMBERG L, MARTIS V, SIMEON F, HUQ A, HATTON T A. Postsynthetic functionalization of Mg-MOF-74 with tetraethylenepentamine:Structural characterization and enhanced CO2 adsorption[J]. ACS Appl Mater Inter, 2017,9(12):11299-11306. doi: 10.1021/acsami.7b02471

    13. [13]

      MARTÍNEZ F, SANZ R, ORCAJO G, BRIONES D, YÁNGVEZ V. Amino-impregnated MOF materials for CO2 capture at post-combustion conditions[J]. Chem Eng Sci, 2016,142:55-61. doi: 10.1016/j.ces.2015.11.033

    14. [14]

      LU W G, WEI Z W, GU Z Y, LIU T F. Tuning the structure and function of metal-organic frameworks via linker design[J]. Chem Soc Rev, 2014,43(16):5561-5593. doi: 10.1039/C4CS00003J

    15. [15]

      MILLWARD A R, YAGHI O M. Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature[J]. J Am Chem Soc, 2005,127(51):17998-17999. doi: 10.1021/ja0570032

    16. [16]

      RADA Z H, ABID H R, SUN H Q, WANG S B. Bifunctionalized metal organic frameworks, UiO-66-NO2-N (N=-NH2, -(OH)2, -(COOH)2), for enhanced adsorption and selectivity of CO2 and N2[J]. J Chem Eng Data, 2015,60(7):2152-2161. doi: 10.1021/acs.jced.5b00229

    17. [17]

      DHANKHAR S S, SHARMA N, KUMAR S, KUMAR T J D, NAGARAJA C M. Rational design of a bifunctional, two-fold interpenetrated Zn-metal-organic framework for selective adsorption of CO2 and efficient aqueous phase sensing of 2, 4, 6-trinitrophenol[J]. Chem Eur J, 2017,23(64):16204-16212. doi: 10.1002/chem.201703384

    18. [18]

      ABID H R, RADA Z H, SHANG J, WANG S B. Synthesis, characterization, and CO2 adsorption of three metal-organic frameworks (MOFs):MIL-53, MIL-96, and amino-MIL-53[J]. Polyhedron, 2016,120:103-111. doi: 10.1016/j.poly.2016.06.034

    19. [19]

      RUBIN H N, REYNOLDS M M. Functionalization of metal-organic frameworks to achieve controllable wettability[J]. Inorg Chem, 2017,56(9):5266-5274. doi: 10.1021/acs.inorgchem.7b00373

    20. [20]

      XIN C L, ZHAN H J, HUANG X, LI H G, ZHAO N, XIAO F K, WEI W, SUN Y H. Effect of various alkaline agents on the size and morphology of nano-sized HKUST-1 for CO2 adsorption[J]. RSC Adv, 2015,5(35):27901-27911. doi: 10.1039/C5RA03986J

    21. [21]

      DONG Qing-nian. Infrared Spectroscopy[M]. Beijing:Petrochemical Industry Press, 1977.

    22. [22]

      PEIKERT K, HOFFMANN F, FRÖBA M. Amino substituted Cu3(btc)2:A new metal-organic framework with a versatile functionality[J]. Chem Commun, 2012,48(91):11196-11198. doi: 10.1039/c2cc36220a

    23. [23]

      DONG Han, ZHANG Xiao-dong, LI Hong-xin, HOU Fu-lin, YANG Yang, CUI Li-feng. Progress in preparation of metal organic frameworks HKUST-1 and its application[J]. Mater Rev, 2016,30(12):114-119.  

    24. [24]

      BACSIK Z, AHLSTEN N, ZIADI A, ZHAO G Y, GARCIA-BENNETT A E, MARTÍN-MATUTE B, HEDIN N. Mechanisms and kinetics for sorption of CO2 on bicontinuous mesoporous silica modified with n-Propylamine[J]. Langmuir, 2011,27(17):11118-11128. doi: 10.1021/la202033p

    25. [25]

      BACSIK Z, RAMBABU A, GARCIA-BENNETT A E, HEDIN N. Temperature-induced uptake of CO2 and formation of carbamates in mesocaged silica modified with n-Propylamines[J]. Langmuir, 2010,26(12):10013-10024. doi: 10.1021/la1001495

    26. [26]

      LI Yong. Synthesis of the organic/inorganic adsorption materials and its adsorption/desorption performance for CO2[D]. Taiyuan: Institute of Coal Chemistry, Chinese Academy of Science, 2013.

    27. [27]

      XIN Chun-ling. Synthesis of mesoporous/microporous composite and its adsorption/desorption performance for CO2[D]. Taiyuan: Institute of Coal Chemistry, Chinese Academy of Science, 2015.

  • 加载中
    1. [1]

      Xueqi YangJuntao ZhaoJiawei YeDesen ZhouTingmin DiJun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-0. doi: 10.1016/j.actphy.2025.100074

    2. [2]

      Xianghai SongXiaoying LiuZhixiang RenXiang LiuMei WangYuanfeng WuWeiqiang ZhouZhi ZhuPengwei Huo . Insights into the greatly improved catalytic performance of N-doped BiOBr for CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-0. doi: 10.1016/j.actphy.2025.100055

    3. [3]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    4. [4]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    5. [5]

      Wenlong WangWentao HaoLang HeJia QiaoNing LiChaoqiu ChenYong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116

    6. [6]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012

    7. [7]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    8. [8]

      Hui BianXinyi YuanNan ZhangZhuo XuJuhong LianRuibin JiangJunqing YanDeng LiShengzhong (Frank) Liu . Correlating vacancy-defect density with CO2 activation for promoted CO2 methanation over CsPbBr3 photocatalyst. Chinese Chemical Letters, 2025, 36(7): 111034-. doi: 10.1016/j.cclet.2025.111034

    9. [9]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    10. [10]

      Yufei Jia Fei Li Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255

    11. [11]

      Xiang-Da ZhangJian-Mei HuangXiaorong ZhuChang LiuYue YinJia-Yi HuangYafei LiZhi-Yuan Gu . Auto-tandem CO2 reduction by reconstructed Cu imidazole framework isomers: Unveiling pristine MOF-mediated CO2 activation. Chinese Chemical Letters, 2025, 36(5): 109937-. doi: 10.1016/j.cclet.2024.109937

    12. [12]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    13. [13]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    14. [14]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    15. [15]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    16. [16]

      Maomao Liu Guizeng Liang Ningce Zhang Tao Li Lipeng Diao Ping Lu Xiaoliang Zhao Daohao Li Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, 2024, 43(8): 100359-100359. doi: 10.1016/j.cjsc.2024.100359

    17. [17]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416

    18. [18]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    19. [19]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    20. [20]

      Fahui XiangLu LiZhen YuanWuji WeiXiaoqing ZhengShimin ChenYisi YangLiangji ChenZizhu YaoJianwei FuZhangjing ZhangShengchang Xiang . Enhanced C2H2/CO2 separation in tetranuclear Cu(Ⅱ) cluster-based metal-organic frameworks by adjusting divider length of pore space partition. Chinese Chemical Letters, 2025, 36(3): 109672-. doi: 10.1016/j.cclet.2024.109672

Metrics
  • PDF Downloads(16)
  • Abstract views(1697)
  • HTML views(367)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return