Citation: YIN Xue-mei, XIE Xian-mei, WU Xu, AN Xia. Catalytic performance of nickel immobilized on organically modified montmorillonite in the steam reforming of ethanol for hydrogen production[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(6): 689-697. shu

Catalytic performance of nickel immobilized on organically modified montmorillonite in the steam reforming of ethanol for hydrogen production

  • Corresponding author: YIN Xue-mei, yxm6686@yeah.net
  • Received Date: 26 November 2015
    Revised Date: 26 March 2016

    Fund Project: The project was supported by the National Natural Science Foundation of China 51541210and the Natural Science Foundation of Youths of Shanxi Province, China 2013021008-4

Figures(11)

  • Nickel immobilized on organically modified montmorillonite (Ni/OMt) was prepared by impregnation method and used as the catalyst for hydrogen production from ethanol steam-reforming; the Ni/OMt catalyst was characterized by XRD, FT-IR, H2-TPR, SEM, XPS and N2 adsorption-desorption. The results indicate that in comparison with the catalyst of nickel supported on unmodified montmorillonite (Ni/MMT), the Ni/OMt catalyst exhibits higher surface area and pore volume as well as higher nickel dispersion with smaller metallic particle size. For the ethanol steam-reforming over Ni/OMt, the conversion of ethanol keeps at 100%, with a selectivity of 70% to hydrogen during the 30h reaction test at 773K;however, over the unmodified Ni/MMT catalyst, severe carbon deposition is observed after reaction for only 10h, accompanying with catalyst deactivation and the formation of byproducts such as acetaldehyde and ethylene. The modification of MMT with cetyltrimethylammonium bromide (CTAB) can significantly improve the stability of the Ni/OMt catalyst in ethanol steam-reforming and reduce the carbon deposition rate by immobilizing highly dispersed nanoparticle Ni on the interlayers of OMt; the selectivity to ethylene and acetaldehyde is also greatly depressed.
  • 加载中
    1. [1]

      MOMIRLAN M, VEZIROGLU T N. The properties of hydrogen as fuel tomorrow in sustainable energy system for a cleaner planet[J]. Int J Hydrogen Energy, 2005,30(7):795-802. doi: 10.1016/j.ijhydene.2004.10.011

    2. [2]

      HARYANTO A, FERNANDO S, MURALI N, ADHIKARI S. Current status of hydrogen production techniques by steam reforming of ethanol:A review[J]. Energy Fuels, 2005,19(5):2098-2106. doi: 10.1021/ef0500538

    3. [3]

      BENITO M, SANZ J L, ISABEL R, PADILLA R, ARJONA R, DAZA L. Bio-ethanol steam reforming:Insights on the mechanism for hydrogen production[J]. J Power Sources, 2005,151(2):11-17.  

    4. [4]

      ARISHTIROVA K, PAWELEC B, NIKOLOV R N, FIERRO J L G, DAMYANOVA S. Promoting effect of Pt in Ni-based catalysis for CH4 reforming[J]. React Kinet Catal Lett, 2007,91(2):241-248. doi: 10.1007/s11144-007-5139-8

    5. [5]

      GUCCIARDI E, CHIODO V, FRENI S, CAVALLARO S, GALVAGNO A, BART J C J. Ethanol and dimethyl ether steam reforming on Rh/Al2O3 catalysts for high-temperature fuel-cell feeds[J]. React Kinet Mech Catal, 2011,104(1):75-87. doi: 10.1007/s11144-011-0335-y

    6. [6]

      IULIANELLI A, LONGO T, LIGUORI S, BASILE A. Production of hydrogen via glycerol steam reforming in a Pd-Ag membrane reactor over Co-Al2O3 catalyst[J]. Asia-Pac J Chem Eng, 2010,5(1):138-145. doi: 10.1002/apj.v5:1

    7. [7]

      YAAKOB Z, KAMARUDIN S K, DAUD W R W, YOSFIAH M R, LIM K L, KAZEMIAN H. Hydrogen production by methanol-steam reforming using Ni-Mo-Cu/γ-alumina trimetallic catalysts[J]. Asia-Pac J Chem Eng, 2010,5(6):862-868. doi: 10.1002/apj.v5.6

    8. [8]

      BSHISH A, YAKOOB Z, NARAYANAN B, RAMAKRISHNAN R, EBSHISH A. Steam-reforming of ethanol for hydrogen production[J]. Chem Pap, 2011,65(3):251-266.  

    9. [9]

      LI T T, ZHANG J F, XIE X M, YIN X M, AN X. Montmorillonite-supported Ni nanoparticles for efficient hydrogen production from ethanol steam reforming[J]. Fuel, 2015,143:55-62. doi: 10.1016/j.fuel.2014.11.033

    10. [10]

      ZHOU L, QI X, JIANG X, ZHOU Y, FU H, CHEN H. Organophilic worm-like ruthenium nanoparticles catalysts by the modification of CTAB on montmorillonite supports[J]. J Colloid Interface Sci, 2013,392(4):201-205.  

    11. [11]

      REN S B, WEN H Z, CAO X Z, WANG Z C, LEI P, PAN C X. Promotion of Ni/clay catalytic activity for hydrogenation of naphthalene by organic modification of clay[J]. Chin J Catal, 2014,35(4):546-552. doi: 10.1016/S1872-2067(14)60028-0

    12. [12]

      TYAGI B, CHUDASAMA C D, JASRA R V. Determination of structural modification in acid activated montmorillonite clay by FT-IR spectroscopy[J]. Spectrochim Acta, Part A, 2006,64(2):273-278. doi: 10.1016/j.saa.2005.07.018

    13. [13]

      MADEJOVA J, BUJDAK J, JANEK M, KOMADEL P. Comparative FT-IR study of structural modifications during acid treatment of dioctahedral smectites and hectorite[J]. Spectrochim Acta Part A, 1998,54(10):1397-1406. doi: 10.1016/S1386-1425(98)00040-7

    14. [14]

      SEVIM A, TANIL A. FT-IR spectra of natural loughlinite (Na-sepiolite) and adsorption of pyrimidine on loughlinite[J]. J Mol Struct, 2004,705(1/3):147-151.  

    15. [15]

      FLESSNER U, JONES D J, ROZIÈRE J, ZAJAC J, STORARO L, LENARDA M, PAVAN M, JIMÉNEZ-LÓPEZ A, RODRÍGUEZ-CASTELLÓN E, TROMBETTA M, BUSCA G. A study of the surface acidity of acid-treated montmorillonite clay catalysts[J]. J Mol Catal A:Chem, 2001,168(1/2):247-256.  

    16. [16]

      GOURNIS D, GEORGAKILAS V, KARAKASSIDES M A, BAKAS T, KORDATOS K, PRATO M. Incorporation of fullerene derivatives into smectite clays:A new family of organic-inorganic nanocomposites[J]. J AmChem Soc, 2004,126(27):8561-8568. doi: 10.1021/ja049237b

    17. [17]

      ZHONG Y H, GU Q F, YIN J, WANG Z G, HE P X. Effect of organic montmorillonite type on the swelling behavior of superabsorbent nanocomposites[J]. Adv Polym Tech, 2014,33(2):1-7.  

    18. [18]

      SING K S W, EVERETT D H, HAUL R A W, MOSCOU L, PIEROTTI R A, OUQU R O L. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity[J]. J Pure Appl Chem, 1985,57:603-619.

    19. [19]

      HAO Q Q, WANG G W, ZHAO Y H, LIU Z T, LIU Z W. Fischer-Tropsch synthesis over cobalt/montmorillonite promoted with different interlayer cations[J]. Fuel, 2013,109:33-42. doi: 10.1016/j.fuel.2012.06.033

    20. [20]

      TANKSALE A, BELTRAMINI J, DUMESIC J, LU G. Effect of Pt and Pd promoter on Ni supported catalysts-A TPR/TPO/TPD and microcalorimetry study[J]. J Catal, 2008,258(2):366-377. doi: 10.1016/j.jcat.2008.06.024

    21. [21]

      ZHANG J F, BAI Y X, ZHANG Q D, WANG X X, ZHANG T, TAN Y S. Low-temperature methanation of syngas in slurry phase over Zr-doped Ni/γ-Al2O3 catalysts prepared using different methods[J]. Fuel, 2014,132(1):211-218.

    22. [22]

      FISHTIK I, ALEXANDER A, DATTA R. A thermodynamic analysis of hydrogen production by steam reforming of ethanol via response reactions[J]. Int J Hydrogen Energy, 2000,25:31-45. doi: 10.1016/S0360-3199(99)00004-X

    23. [23]

      DAVDA R R, SHABAKER J W, HUBER G W, CORTRIGHT R D, DUMESIC J A. A review of catalytic issues and process conditions for renewable hydrogen and alkanes by aqueous-phase reforming of oxygenated hydrocarbons over supported metal catalysts[J]. App Catal B:Environ, 2005,56(1/2):171-186.

    24. [24]

      LIBERATORI J W C, RIBEIRO R U, ZANCHET D, NORONHA F B, BUENO J M C. Steam reforming of ethanol on supported nickel catalysts[J]. Appl Catal A:Gen, 2007,327(2):197-204. doi: 10.1016/j.apcata.2007.05.010

    25. [25]

      ZHANG D Y, MA Y, FENG H X, LUO H M, MEN X W, HAO Y. Preparation and characterizationof a carbon/Fly Ash composite Adsorbent[J]. Chin J Appl Chem, 2011,28(8):942-948.

    26. [26]

      SHABAKER J, SIMONETTI D, CORTRIGHT R, DUMESIC J. Sn-modified Ni catalysts for aqueous-phase reforming:Characterization and deactivation studies[J]. J Catal, 2005,231(1):67-76. doi: 10.1016/j.jcat.2005.01.019

    27. [27]

      CHOONG C K S, ZHONG Z, LIN H. Effect of calcium addition on catalytic ethanol steam reforming of Ni/Al2O3:I. Catalytic stability, electronic properties and coking mechanism[J]. Appl Catal A:Gen, 2011,407(1):145-154.

  • 加载中
    1. [1]

      Weiping XiaoYuhang ChenQin ZhaoDanil BukhvalovCaiqin WangXiaofei Yang . Constructing the synergistic active sites of nickel bicarbonate supported Pt hierarchical nanostructure for efficient hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(12): 110176-. doi: 10.1016/j.cclet.2024.110176

    2. [2]

      Fan ChenXiaoyu ZhaoWeihang MiaoYingying LiYe YuanLingling Chu . Regio- and enantioselective hydrofluorination of internal alkenes via nickel-catalyzed hydrogen atom transfer. Chinese Chemical Letters, 2025, 36(5): 110239-. doi: 10.1016/j.cclet.2024.110239

    3. [3]

      Hong Yin Zhipeng Yu . Hexavalent iridium catalyst enhances efficiency of hydrogen production. Chinese Journal of Structural Chemistry, 2025, 44(1): 100382-100382. doi: 10.1016/j.cjsc.2024.100382

    4. [4]

      Yuehai ZhiChen GuHuachao JiKang ChenWenqi GaoJianmei ChenDafeng Yan . The advanced development of innovative photocatalytic coupling strategies for hydrogen production. Chinese Chemical Letters, 2025, 36(1): 110234-. doi: 10.1016/j.cclet.2024.110234

    5. [5]

      Tianhao Li Wenguang Tu Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2023.100195

    6. [6]

      Zhenkang AiHui ChenXuebin Liao . Nickel-catalyzed decarboxylative difluoromethylation and alkylation of alkenes. Chinese Chemical Letters, 2025, 36(3): 109954-. doi: 10.1016/j.cclet.2024.109954

    7. [7]

      Abiduweili Sikandaier Yukun Zhu Dongjiang Yang . In-situ decorated cobalt phosphide cocatalyst on Hittorf's phosphorus triggering efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(2): 100242-100242. doi: 10.1016/j.cjsc.2024.100242

    8. [8]

      Jiangping Chen Hongju Ren Kai Wu Huihuang Fang Chongqi Chen Li Lin Yu Luo Lilong Jiang . Boosting hydrogen production of ammonia decomposition via the construction of metal-oxide interfaces. Chinese Journal of Structural Chemistry, 2024, 43(2): 100236-100236. doi: 10.1016/j.cjsc.2024.100236

    9. [9]

      Deqi FanYicheng TangYemei LiaoYan MiYi LuXiaofei Yang . Two birds with one stone: Functionalized wood composites for efficient photocatalytic hydrogen production and solar water evaporation. Chinese Chemical Letters, 2024, 35(9): 109441-. doi: 10.1016/j.cclet.2023.109441

    10. [10]

      Pingping HAOFangfang LIYawen WANGHoufen LIXiao ZHANGRui LILei WANGJianxin LIU . Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1811-1824. doi: 10.11862/CJIC.20240054

    11. [11]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    12. [12]

      Linping Li Junhui Su Yanping Qiu Yangqin Gao Ning Li Lei Ge . Design and fabrication of ternary Au/Co3O4/ZnCdS spherical composite photocatalyst for facilitating efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100472-100472. doi: 10.1016/j.cjsc.2024.100472

    13. [13]

      Zhuo LiPeng YuDi ShenXinxin ZhangZhijian LiangBaoluo WangLei Wang . Low-loading Pt anchored on molybdenum carbide-based polyhedral carbon skeleton for enhancing pH-universal hydrogen production. Chinese Chemical Letters, 2025, 36(4): 109713-. doi: 10.1016/j.cclet.2024.109713

    14. [14]

      Hongyang LiYue LiuXiuwen WangHaijing YanGuimin WangDongxu WangYilong WangShuo YangYanqing Jiao . Morphology engineering and electronic structure remodeling of manganese-incorporated VN for boosting urea-assisted energy-saving hydrogen production. Chinese Chemical Letters, 2025, 36(6): 110042-. doi: 10.1016/j.cclet.2024.110042

    15. [15]

      Xiao-Bo LiuRen-Ming LiuXiao-Di BaoHua-Jian XuQi ZhangYu-Feng Liang . Nickel-catalyzed reductive formylation of aryl halides via formyl radical. Chinese Chemical Letters, 2024, 35(12): 109783-. doi: 10.1016/j.cclet.2024.109783

    16. [16]

      Ping Lu Baoyin Du Ke Liu Ze Luo Abiduweili Sikandaier Lipeng Diao Jin Sun Luhua Jiang Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361

    17. [17]

      Yueting MaZhiyan FengYuxin DongZhiyong YanHou WangYan Wu . Harnessing the interfacial sulfur-edge and metal-edge sites in ZnIn2S4/MnS heterojunctions boosts charge transfer for photocatalytic hydrogen production. Chinese Chemical Letters, 2025, 36(6): 110922-. doi: 10.1016/j.cclet.2025.110922

    18. [18]

      Jing Wang Zhongliao Wang Jinfeng Zhang Kai Dai . Single-layer crystalline triazine-based organic framework photocatalysts with different linking groups for H2O2 production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100202-100202. doi: 10.1016/j.cjsc.2023.100202

    19. [19]

      Ruilong GengLingzi PengChang Guo . Dynamic kinetic stereodivergent transformations of propargylic ammonium salts via dual nickel and copper catalysis. Chinese Chemical Letters, 2024, 35(8): 109433-. doi: 10.1016/j.cclet.2023.109433

    20. [20]

      Haoran ShiJiaxin WangYuqin ZhuHongyang LiGuodong JuLanlan ZhangChao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333

Metrics
  • PDF Downloads(0)
  • Abstract views(785)
  • HTML views(75)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return