Citation: ZHANG Guo-qiang, GUO Tian-yu, ZHENG Hua-yan, LI Zhong. Effect of calcination temperature on catalytic performance of CuCe/AC catalysts for oxidative carbonylation of methanol[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(6): 674-679. shu

Effect of calcination temperature on catalytic performance of CuCe/AC catalysts for oxidative carbonylation of methanol

  • Corresponding author: LI Zhong, lizhong@tyut.edu.cn
  • Received Date: 26 February 2016
    Revised Date: 12 April 2016

Figures(6)

  • The CuCe/AC catalysts were prepared by impregnation first with Ce and then with Cu, and effect of calcination temperature on catalytic performance of the CuCe/AC catalysts for gas-phase oxidative carbonylation of methanol to dimethyl carbonate was studied. The active component content and valence state of as-prepared catalysts were characterized by XRD, XPS and H2-TPR. The results show that Cu2+ is gradually reduced to Cu+ and Cu0 species. After calcinated at 450℃, some Cu2O phase still exists in the catalyst, which indicates that interaction between Cu and Ce has suppressed the reduction of Cu2O. As the calcination temperature of 300℃, the content of Cu+ achieves the highest, and the corresponding catalyst shows the best catalytic activity. The space-time yield of DMC, selectivity of DMC and conversion of methanol are 143.4mg/(g·h), 85.2% and 4.1%, respectively.
  • 加载中
    1. [1]

      FU Z H, ONO Y. Two-step synthesis of diphenyl carbonate from dimethyl carbonate and phenol using MoO3/SiO2 catalysts[J]. J Mol Catal A:Chem, 1997,118(3):293-299. doi: 10.1016/S1381-1169(96)00409-8

    2. [2]

      ONO Y. Catalysis in the production and reactions of dimethyl carbonate, an environmentally benign building block[J]. Appl Catal A:Gen, 1997,155(2):133-166. doi: 10.1016/S0926-860X(96)00402-4

    3. [3]

      WANG Y J, ZHAO X Q, YUAN B G, ZHANG B C, CONG J S. Synthesis of dimethyl carbonate by gas-phase oxidative carbonylation of methanol on the supported solid catalyst I. Catalyst preparation and catalytic properties[J]. Appl Catal A:Gen, 1998,171(2):255-260. doi: 10.1016/S0926-860X(98)00078-7

    4. [4]

      LI Z, WANG R Y, ZHENG H Y, XIE K C. Preparation of CuIY catalyst using CuCl2 as precursor for vapor phase oxidative carbonylation of methanol to dimethyl carbonate[J]. Fuel, 2010,89(7):1339-1343. doi: 10.1016/j.fuel.2009.10.021

    5. [5]

      ZHENG Hua-yan, REN Jun, ZHOU Yuan, NIU Yan-yan, LI Zhong. Preparation of Cu+/SiO2-ZrO2catalysts for the oxidative carbonylation of methanol to dimethyl carbonate[J]. J Fuel Chem Technol, 2011,39(4):282-286. doi: 10.1016/S1872-5813(11)60022-4

    6. [6]

      LI Zhong, ZHU Qiong-fang, WANG Rui-yu, NIU Yan-yan, ZHENG Hua-yan. Cu supported on activated carbon catalyst prepared by hydrazine hydrate reduction for catalyzing oxidative carbonylation of methanol[J]. Chin J Inorg Chem, 2011,27(4):718-724.  

    7. [7]

      ENGELDINGER J, DOMKE C, RICHTER M, BENTRUP U. Elucidating the role of Cu species in the oxidative carbonylation of methanol to dimethyl carbonate on CuY:An in situ spectroscopic and catalytic study[J]. Appl Catal A:Gen, 2010,382(2):303-311. doi: 10.1016/j.apcata.2010.05.009

    8. [8]

      MA X B, LI Z H, WANG B W, XU G H. Effect of catalyst preparation on the oxidative carbonylation of methanol to dimethyl carbonate[J]. React Kinet Catal Lett, 2002,76(1):179-187. doi: 10.1023/A:1015690000917

    9. [9]

      JIANG R X, WANG S F, ZHAO X Q, WANG Y J, ZHANG C F. The effects of promoters on catalytic properties and deactivation-regeneration of the catalyst in the synthesis of dimethyl carbonate[J]. Appl Catal A:Gen, 2003,238(1):131-139. doi: 10.1016/S0926-860X(02)00345-9

    10. [10]

      LI Zhong, WEN Chun-mei, WANG Rui-yu, ZHENG Hua-yan, XIE Ke-chang. Chloride-free Cu2O/AC catalyst prepared by pyrolysis of copper acetate and catalytic oxycarbonylation[J]. Chem J Chin Univ, 2009,30(10):2024-2031.

    11. [11]

      REN J, WANG W, WANG D L, ZUO Z J, LIN J Y, LI Z. A theoretical investigation on the mechanism of dimethyl carbonate formation on Cu/AC catalyst[J]. Appl Catal A:Gen, 2014,472:47-52. doi: 10.1016/j.apcata.2013.12.006

    12. [12]

      REN Jun, GUO Chang-jiang, YANG Lei-lei, LI Zhong. Synthesis of dimethyl carbonate over starch-based carbon-supported Cu nanoparticles catalysts[J]. Chin J Catal, 2013,34(9):1734-1744. doi: 10.1016/S1872-2067(12)60640-8

    13. [13]

      ZHANG G Q, LI Z, ZHENG H Y, FU T J, JU Y B, WANG Y C. Influence of the surface oxygenated groups of activated carbon on preparation of a nano Cu/AC catalyst and heterogeneous catalysis in the oxidative carbonylation of methanol[J]. Appl Catal B:Environ, 2015,179:95-105. doi: 10.1016/j.apcatb.2015.05.001

    14. [14]

      REN Jun, WANG Dong-lei, PEI Yong-li, QIN Zhi-feng, LIN Jian-ying, LI Zhong. Effects of lithium content on the structural properties and catalytic activities of CuLi/AC catalysts in the oxidative carbonylation of methanol to dimethyl carbonate[J]. Chem J Chin Univ, 2013,34(11):2594-2600.  

    15. [15]

      ZHENG Hua-yan, GUO Tian-yu, LI Zhong, MENG Fan-hui, QIN Yao. Effect of impregnation strategy on structure and catalytic performance of CuCe/AC catalyst[J]. Chin J Inorg Chem, 2013,29(12):2575-2581.  

    16. [16]

      ESPINóS J P, MORALES J, BARRANCO A, CABALLERO A, HOLGADO J P, GONZáLEZ-ELIPE A R. Interface effects for Cu, CuO, and Cu2O deposited on SiO2 and ZrO2. XPS determination of the valence state of copper in Cu/SiO2 and Cu/ZrO2catalysts[J]. J Phys Chem B, 2002,106(27):6921-6929. doi: 10.1021/jp014618m

    17. [17]

      TEO J J, CHANG Y, ZENG H C. Fabrications of hollow nanocubes of Cu2O and Cu via reductive self-assembly of CuO nanocrystals[J]. Langmuir, 2006,22(17):7369-7377. doi: 10.1021/la060439q

    18. [18]

      WANG W Z, WANG G H, WANG X S, ZHAN Y J, LIU Y K, ZHENG C L. Synthesis and characterization of Cu2O nanowires by a novel reduction route[J]. Adv Mater, 2002,14(1):67-69. doi: 10.1002/(ISSN)1521-4095

    19. [19]

      RAIMONDI F, GEISSLER K, WAMBACH J, WOKAUN A. Hydrogen production by methanol reforming:Post-reaction characterisation of a Cu/ZnO/Al2O3catalyst by XPS and TPD[J]. Appl Surf Sci, 2002,189(1/2):59-71.

    20. [20]

      HE Z, LIN H Q, HE P, YUAN Y Z. Effect of boric oxide doping on the stability and activity of a Cu-SiO2 catalyst for vapor-phase hydrogenation of dimethyl oxalate to ethylene glycol[J]. J Catal, 2011,277(1):54-63. doi: 10.1016/j.jcat.2010.10.010

    21. [21]

      LEI Zhi-ping, LIU Zhen-yu, GUO Yan-xia. Catalytic oxidation behavior of phenol adsorbed on Cu-Ce/AC catalyst-sorbent[J]. J Fuel Chem Technol, 2009,37(1):93-97.  

    22. [22]

      REN J, REN M J, WANG D L, LIN J Y, LI Z. Mechanism of microwave-induced carbothermic reduction and catalytic performance of Cu/activated carbon catalysts in the oxidative carbonylation of methanol[J]. J Therm Anal Calorim, 2015,120(3):1929-1939. doi: 10.1007/s10973-015-4519-y

    23. [23]

      RODRIGUES EG, PEREIRA MFR, CHEN X, DELGADOE JJ, ÓRFÁO J J M. Influence of activated carbon surface chemistry on the activity of Au/AC catalysts in glycerol oxidation[J]. J Catal, 2011,281(1):119-127. doi: 10.1016/j.jcat.2011.04.008

    24. [24]

      SUBBARAMAIAH V, SRIVASTAVA V C, MALL I D. Catalytic activity of Cu/SBA-15 for peroxidation of pyridine bearing wastewater at atmospheric condition[J]. AIChE J, 2013,59(7):2577-2586. doi: 10.1002/aic.v59.7

    25. [25]

      PRIYANKA , SUBBARAMAIAH V, SRIVASTAVA V C, MALL I D. Catalytic oxidation of nitrobenzene by copper loaded activated carbon[J]. Sep Purif Technol, 2014,125:284-290. doi: 10.1016/j.seppur.2014.01.045

  • 加载中
    1. [1]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    2. [2]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    3. [3]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    4. [4]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    5. [5]

      Yu Wang Haiyang Shi Zihan Chen Feng Chen Ping Wang Xuefei Wang . 具有富电子Ptδ-壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-. doi: 10.1016/j.actphy.2025.100081

    6. [6]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    7. [7]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    8. [8]

      Lewang Yuan Yaoyao Peng Zong-Jie Guan Yu Fang . 二维共价有机框架作为光催化剂在有机合成中的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-. doi: 10.1016/j.actphy.2025.100086

    9. [9]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    10. [10]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    11. [11]

      Fangxuan Liu Ziyan Liu Guowei Zhou Tingting Gao Wenyu Liu Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071

    12. [12]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    13. [13]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    14. [14]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    15. [15]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    16. [16]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    17. [17]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    18. [18]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    19. [19]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    20. [20]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

Metrics
  • PDF Downloads(0)
  • Abstract views(706)
  • HTML views(106)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return