Citation: Hu Dan, Liu Qiao, Chen Chongyi. Polymer Hydrogel Based Materials for Supercapacitors[J]. Chemistry, ;2018, 81(6): 483-492. shu

Polymer Hydrogel Based Materials for Supercapacitors

  • Corresponding author: Chen Chongyi, chenchongyi@nbu.edu.cn
  • Received Date: 23 March 2018
    Accepted Date: 2 April 2018

Figures(8)

  • Stretchability and compressibility are essential parameters for flexible and wearable supercapacitors. Polymer hydrogels with excellent mechanical properties and unique network microstructures have become ideal materials for the new generation high-performance supercapacitors. Polymer hydrogels can be used as either flexible electrode materials with high energy storage efficiency or quasi-solid-state electrolyte materials to prepare lightweight, safe and stable flexible all-solid-state energy storage devices. Herein, recent progresses in the application of polymer hydrogels in the field of supercapacitors were reviewed based on the chemical composition of polymer hydrogels, in terms of the types of electrodes and electrolytes, respectively, and the development trend of polymer hydrogels in this field was also prospected.
  • 加载中
    1. [1]

      L L Zhang, X S Zhao. Chem. Soc. Rev., 2009, 38(9):2520-2531. 

    2. [2]

      Z Yu, L Tetard, L Zhai et al. Energy Environ. Sci., 2015, 8(3):702-730. 

    3. [3]

      T R Hoare, D S Kohane. Polymer, 2008, 49(8):1993-2007. 

    4. [4]

      N A Peppas, J Z Hilt, A Khademhosseini et al. Adv. Mater., 2006, 18(11):1345-1360. 

    5. [5]

      H Yuk, S Lin, C Ma et al. Nat. Commun., 2017, 8:14230. 

    6. [6]

      H Yuk, T Zhang, S Lin et al. Nat. Mater., 2016, 15(2):190-196. 

    7. [7]

      J A Luckanagul, K Metavarayuth, S Feng et al. ACS Biomater. Sci. Eng., 2016, 2(4):606-615. 

    8. [8]

      C Chen, D Wu, W Fu et al. Biomacromolecules, 2013, 14(8):2494-2498. 

    9. [9]

      Z Lei, Q Wang, S Sun et al. Adv. Mater., 2017, 29(22):1700321. 

    10. [10]

      G Cai, J Wang, K Qian et al. Adv. Sci., 2017, 4(2):1600190. 

    11. [11]

      E Armelin, M M Perez-Madrigal, C Aleman et al. J. Mater. Chem. A, 2016, 4(23):8952-8968. 

    12. [12]

      N A Choudhury, S Sampath, A K Shukla. Energy Environ. Sci., 2009, 2(1):55-67. 

    13. [13]

      F Liu, S Song, D Xue et al. Adv. Mater., 2012, 24(8):1089-1094. 

    14. [14]

      Y Meng, Y Zhao, C Hu et al. Adv. Mater., 2013, 25(16):2326-2331. 

    15. [15]

      T Chen, R Hao, H Peng et al. Angew. Chem. Int. Ed., 2015, 54(2):618-622.

    16. [16]

      M B Sassin, C N Chervin, D R Rolison et al. Acc. Chem. Res., 2013, 46(5):1062-1074. 

    17. [17]

      T Liu, L Finn, M Yu et al. Nano Lett., 2014, 14(5):2522-2527. 

    18. [18]

      A Sumboja, C Y Foo, X Wang et al. Adv. Mater., 2013, 25(20):2809-2815. 

    19. [19]

      X Xiao, X Peng, H Jin et al. Adv. Mater., 2013, 25(36):5091-5097. 

    20. [20]

      L Pan, G Yu, D Zhai et al. PNAS, 2012, 109(24):9287-9292. 

    21. [21]

      H Guo, W He, Y Lu et al. Carbon, 2015, 92:133-141. 

    22. [22]

      K Wang, X Zhang, C Li et al. J. Mater. Chem. A, 2014, 2(46):19726-19732. 

    23. [23]

      S Zeng, H Chen, F Cai et al. J. Mater. Chem. A, 2015, 3(47):23864-23870. 

    24. [24]

      M Moussa, Z Zhao, M F El-Kady et al. J. Mater. Chem. A, 2015, 3(30):15668-15674. 

    25. [25]

      J Luo, W Zhong, Y Zou et al. J. Power Sources, 2016, 319:73-81. 

    26. [26]

      M A Smirnov, M P Sokolova, N V Bobrova et al. J. Power Sources, 2016, 304:102-110. 

    27. [27]

      G Z Zhang, Y H Chen, Y H Deng et al. ACS Appl. Mater. Interf., 2017, 9(41):36301-36310. 

    28. [28]

      W Li, F Gao, X Wang et al. Angew. Chem. Int. Ed., 2016, 55(32):9196-9201. 

    29. [29]

      G P Hao, F Hippauf, M Oschatz et al. ACS Nano, 2014, 8(7):7138-7146. 

    30. [30]

      Y Shi, L Pan, B Liu et al. J. Mater. Chem. A, 2014, 2(17):6086-6091. 

    31. [31]

      B S Yin, S W Zhang, Q Q Ren et al. J. Mater. Chem. A, 2017, 5(47):24942-24950. 

    32. [32]

      X M Wu, M Lian. J. Power Sources, 2017, 362:184-191. 

    33. [33]

      Y Han, M Shen, Y Wu et al. Synth. Met., 2013, 172:21-27. 

    34. [34]

      Y Q Han, Y Guo, M X Shen et al. High Perform. Polym., 2014, 26(5):499-506. 

    35. [35]

      B Yao, H Wang, Q Zhou et al. Adv. Mater., 2017, 29(28):1700974. 

    36. [36]

      A Lewandowski, M Zajder, E Frackowiak et al. Electrochim. Acta, 2001, 46(18):2777-2780. 

    37. [37]

      S Nohara, H Wada, N Furukawa et al. Electrochim. Acta, 2003, 48(6):749-753. 

    38. [38]

      H Wada, S Nohara, N Furukawa et al. Electrochim. Acta, 2004, 49(27):4871-4875. 

    39. [39]

      K T Lee, N L Wu. J. Power Sources, 2008, 179(1):430-434. 

    40. [40]

      K T Lee, J F Lee, N L Wu. Electrochim. Acta, 2009, 54(26):6148-6153. 

    41. [41]

      Y Guo, X Zhou, Q Tang et al. J. Mater. Chem. A, 2016, 4(22):8769-8776. 

    42. [42]

      S A Hashmi, R J Latham, R G Linford et al. Polym. Int., 1998, 47(1):28-33. 

    43. [43]

      Z Zhang, K Chi, F Xiao et al. J. Mater. Chem. A, 2015, 3(24):12828-12835. 

    44. [44]

      N A Choudhury, A K Shukla, S Sampath et al. J. Electrochem. Soc., 2006, 153(3):A614-A620.

    45. [45]

      H Wada, K Yoshikawa, S Nohara et al. J. Power Sources, 2006, 159(2):1464-1467. 

    46. [46]

      C C Yang, S T Hsu, W C Chien. J. Power Sources, 2005, 152(1):303-310. 

    47. [47]

      K Wang, X Zhang, C Li et al. Adv. Mater., 2015, 27(45):7451-7457. 

    48. [48]

      L M Zang, Q F Liu, J H Qiu et al. ACS Appl. Mater. Interf., 2017, 9(39):33941-33947. 

    49. [49]

      J Hu, K Xie, X Liu et al. Electrochim. Acta, 2017, 227:455-461. 

    50. [50]

      H Li, T Lv, N Li et al. Nanoscale, 2017, 9(46):18474-18481. 

    51. [51]

      Y Huang, M Zhong, F K Shi et al. Angew. Chem. Int. Ed., 2017, 56(31):9141-9145. 

    52. [52]

      N A Choudhury, S Sampath, A K Shukla. J. Electrochem. Soc., 2008, 155(1):A74-A81. 

    53. [53]

      N A Choudhury, P W C Northrop, A C Crothers et al. J. Appl. Electrochem., 2012, 42(11):935-943. 

    54. [54]

      M M Perez-Madrigal, F Estrany, E Armelin et al. J. Mater. Chem. A, 2016, 4(5):1792-1805. 

  • 加载中
    1. [1]

      Huayan LiuYifei ChenMengzhao YangJiajun Gu . Strategies for enhancing capacity and rate performance of two-dimensional material-based supercapacitors. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-0. doi: 10.1016/j.actphy.2025.100063

    2. [2]

      Zeqiu ChenLimiao CaiJie GuanZhanyang LiHao WangYaoguang GuoXingtao XuLikun Pan . Advanced electrode materials in capacitive deionization for efficient lithium extraction. Acta Physico-Chimica Sinica, 2025, 41(8): 100089-0. doi: 10.1016/j.actphy.2025.100089

    3. [3]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    4. [4]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    5. [5]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    6. [6]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    7. [7]

      Qiqi LiSu ZhangYuting JiangLinna ZhuNannan GuoJing ZhangYutong LiTong WeiZhuangjun Fan . Preparation of High Density Activated Carbon by Mechanical Compression of Precursors for Compact Capacitive Energy Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-0. doi: 10.3866/PKU.WHXB202406009

    8. [8]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    9. [9]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    10. [10]

      Huimin LiuKezhi LiXin ZhangXuemin YinQiangang FuHejun Li . SiC Nanomaterials and Their Derived Carbons for High-Performance Supercapacitors. Acta Physico-Chimica Sinica, 2024, 40(2): 2304026-0. doi: 10.3866/PKU.WHXB202304026

    11. [11]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    12. [12]

      Hongren RONGGexiang GAOZhiwei LIUKe ZHOULixin SUHao HUANGWenlong LIUQi LIU . High-performance supercapacitor based on 1D cobalt-based coordination polymer. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1183-1195. doi: 10.11862/CJIC.20250034

    13. [13]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    14. [14]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    15. [15]

      Huirong BAOJun YANGXiaomiao FENG . Preparation and electrochemical properties of NiCoP/polypyrrole/carbon cloth by electrodeposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1083-1093. doi: 10.11862/CJIC.20250008

    16. [16]

      Xinran Zhang Siqi Liu Yichi Chen Qingli Zou Qinghong Xu Yaqin Huang . From Protein to Energy Storage Materials: Edible Gelatin Jelly Electrolyte. University Chemistry, 2025, 40(7): 255-266. doi: 10.12461/PKU.DXHX202408104

    17. [17]

      Hanmei LüXin ChenQifu SunNing ZhaoXiangxin Guo . Uniform Garnet Nanoparticle Dispersion in Composite Polymer Electrolytes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305016-0. doi: 10.3866/PKU.WHXB202305016

    18. [18]

      Yingtong FANYujin YAOShouhao WANYihang SHENXiang GAOCuie ZHAO . Construction of copper tetrakis(4-carboxyphenyl)porphyrin/silver nanowire composite electrode for flexible and transparent supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1309-1317. doi: 10.11862/CJIC.20250043

    19. [19]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    20. [20]

      Mingyang MenJinghua WuGaozhan LiuJing ZhangNini ZhangXiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019

Metrics
  • PDF Downloads(6)
  • Abstract views(330)
  • HTML views(75)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return