Citation: LIU Yan-quan, CHEN Le-ming, JI Jie-qiang, ZHANG Wei-guo, WANG Qin-hui, ZHOU Qi, NIE Li. Distribution characteristics of alkali emission between gas and solid phase during Zhundong coal combustion[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(3): 314-320. shu

Distribution characteristics of alkali emission between gas and solid phase during Zhundong coal combustion

  • Corresponding author: CHEN Le-ming, lemingc@zju.edu.cn
  • Received Date: 11 September 2015
    Revised Date: 1 December 2015

    Fund Project: National Science & Technology Pillar Program 2015BAA04B00

Figures(7)

  • The sequence extraction method was used to analyze the content of alkali metals in different modes of occurrence in Zhundong coal. Most sodium in the coal is water-soluble one, accouting for 59%, while potassium exists mainly in the form of non-soluble aluminosilicates, accounting for 53%. The combustion experiments of Zhundong coal at the temperature ranging from 400 to 950℃ were carried out to study the distribution characteristics of alkali emission between the gas and the solid phase. The results show that the ash yield decreases with the increase in temperature. Sodium releases continuously from coal into the gas phase; However, the content of potassium in the gas phase is lower than that in the solid phase at 400℃, while the content of potassium in gas exceeds that in solid and basically remains the same when the temperature is higher than 500℃. The enrichment of alkali metals in solid occurs and increases with temperature. Moreover, the sodium in the gas phase mainly originates from water-soluble one, and potassium not only releases from soluble ones, but also from non-soluble aluminosilicates. According to the result of XRD, alkali metals will react with SiO2 and Al2O3 to form low-melting-point albite and nepheline.
  • 加载中
    1. [1]

      ZHOU J B, ZHUANG X G, ALASTUEY A, QUEROL X, LI J H. Geochemistry and mineralogy of coal in the recently explored Zhundong large coal field in the Junggar basin, Xinjiang province, China[J]. Int J Coal Geol, 2010,82(1/2):51-67.  

    2. [2]

      LI Lu-ming. Design and application of 350MW supercritical boiler burning Zhundong coal[J]. Pow Syst Eng, 2014,30(2):39-41.  

    3. [3]

      SHIMOGORI M, MINE T, OHYATSU N, TAKARAYAMA N, MASTSUMURA Y. Effects of fine ash particles and alkali metals on ash deposition characteristics at the initial stage of ash deposition determined in 1.5MWth pilot plant tests[J]. Fuel, 2012,97(7):233-240.  

    4. [4]

      DONG Ming-gang. Prevention measures and the influence of slagging, fouling and corrosion of high-sodium coal on the heat surfaces of boilers[J]. Therm Power Gener, 2008,37(9):35-39.  

    5. [5]

      QIU Zhong, LIANG Jin-lin. Circulating fluidized bed boiler burning Xinjiang Wucaiwan area in Zhundong coal measures[J]. Appl Energy Technol, 2012(12):16-19.  

    6. [6]

      HAN Chun-li, ZHANG Jun, LIU Kun-lei, XU Yi-qian. Modes of occurrence of sodium in coals[J]. J Fuel Chem Technol, 1999,27(6):95-98.  

    7. [7]

      ZHANG Jun, HAN Chun-li, LIU Kun-lei, XU Yi-qian. Various forms of alkali metals in coal and its behavior during coal combustion[J]. J Eng Therm Energy Power, 1999,14(2):83-85.  

    8. [8]

      LI Yong, XIAO Jun. The occurrence and migration mechanism of alkal metals during coal-fired process and research progress[J]. Clean Coal Technol, 2005,11(1):39-44.  

    9. [9]

      FU Zi-wen, WANG Zhang-an, CHE De-fu, WENG Qing-song. Experimental study on the effect of ashing temperature on physicochemical properties of Zhundong coal ashes[J]. J Eng Thermophys, 2014,35(3):609-613.  

    10. [10]

      WANG Xue-bin, WEI Bo, ZHANG Li-meng, TAN Hou-zhang, XU Tong-mo. Effect of temperature and silicon additives on occurrence and transformation characteristics of alkali metal in Zhundong coal[J]. Therm Power Gener, 2014,43(8):84-88.  

    11. [11]

      LIU Da-hai, ZHANG Shou-yu, TU Sheng-kang, JIN Tao, SHI Da-zhong, SHI Deng-yu, PEI Yu-feng. Transformation and release of sodium in Wucaiwan coal during combustion[J]. Chem Ind Eng Prog, 2015,34(3):705-709.  

    12. [12]

      TAO Yu-jie, ZHANG Yan-wei, ZHOU Jun-hu, JING Xue-hui, LI Tao, LIU Jian-zhong, CEN Ke-fa. Mineral conversion regularity and release behavior of Na, Ca during Zhundong coal's combustion[J]. Proc CSEE, 2015,35(5):1169-1175.  

    13. [13]

      SMITH I W. The combustion rates of coal chars: A review[C]. Nineteenth Symposium (International) on Combustion, 1982, 19(1): 1045-1065.

    14. [14]

      LIU Jing, WANG Zhi-hua, XIANG Fei-peng, HUANG Zhen-yu, LIU Jian-zhong, ZHOU Jun-hu, CEN Ke-fa. Modes of occurrence and transformation of alkali metals in Zhundong coal during combustion[J]. J Fuel Chem Technol, 2014,42(3):316-322.  

    15. [15]

      ZHANG J, HAN C L, YAN Z, LIU K L, XU Y Q, SHENG C D, PAN W P. The varying characterization of alkali metals (Na, K) from coal during the initial stage of coal combustion[J]. Energy Fuels, 2001,15(4):786-793. doi: 10.1021/ef000140u

    16. [16]

      WENG Qing-song, WANG Zhang-an, CHE De-fu, FU Zi-wen. Alkali metals occurrence mode and its influence on combustion characteristics in Zhundong coals[J]. J Combust Sci Technol, 2014,20(3):216-221.  

    17. [17]

      FU Zi-wen, WANG Zhang-an, WENG Qing-song, CHE De-fu. Experimental investigation for effect of water washing on Zhundong coal properties[J]. J Xi'an Jiaotong Univ, 2014,48(3):54-60.  

    18. [18]

      ZHANG Jun, HAN Chun-li, YAN Zheng, YU Gang, LIU Kun-lei, XU Yi-qian. Experimental studies on the behavior of sodium of coal in the initial stage of combustion[J]. J Fuel Chem Technol, 2001,29(1):49-53.  

    19. [19]

      LUAN C, YOU C F, ZHANG D K. An experimental investigation into the characteristics and deposition mechanism of high-viscosity coal ash[J]. Fuel, 2014,119(3):14-20.  

    20. [20]

      RAASK E. Mineral impurities in coal combustion: Behavior, problems, and remedial measures[M]. Washington: Hemisphere Publishing Corporation, 1985.

    21. [21]

      MA Yan, HUANG Zhen-yu, TANG Hui-ru, WANG Zhi-hua, ZHOU Jun-hu, CEN Ke-fa. Mineral conversion of Zhundong coal during ashing process and the effect of mineral additives on its ash fusion characteristics[J]. J Fuel Chem Technol, 2014,42(1):20-25.  

  • 加载中
    1. [1]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    2. [2]

      Ying Wang Quanguo Zhai Zhiqiang Wang Qingjuan Lei Shengli Gao . 无机化学中“碱金属元素”教学内容的重构. University Chemistry, 2025, 40(6): 85-92. doi: 10.12461/PKU.DXHX202407049

    3. [3]

      Zuozhong Liang Lingling Wei Yiwen Cao Yunhan Wei Haimei Shi Haoquan Zheng Shengli Gao . Exploring the Development of Undergraduate Scientific Research Ability in Basic Course Instruction: A Case Study of Alkali and Alkaline Earth Metal Complexes in Inorganic Chemistry. University Chemistry, 2024, 39(7): 247-263. doi: 10.3866/PKU.DXHX202310103

    4. [4]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    5. [5]

      Xin HanZhihao ChengJinfeng ZhangJie LiuCheng ZhongWenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 2404023-0. doi: 10.3866/PKU.WHXB202404023

    6. [6]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    7. [7]

      Xuexia He Zhibin Lei Pei Chen Qi Li Weiyu Deng Peng Hu . 以“溶度积规则”指导电荷转移共晶沉淀析出——材料类专业无机化学教学改革案例. University Chemistry, 2025, 40(8): 1-10. doi: 10.12461/PKU.DXHX202410099

    8. [8]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    9. [9]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    10. [10]

      Huiwei DingBo PengZhihao WangQiaofeng Han . Advances in Metal or Nonmetal Modification of Bismuth-Based Photocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2305048-0. doi: 10.3866/PKU.WHXB202305048

    11. [11]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    12. [12]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    13. [13]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    14. [14]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    15. [15]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    16. [16]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    17. [17]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

    18. [18]

      Tingting XUWenjing ZHANGYongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229

    19. [19]

      Wenjing ZHANGXiaoqing WANGZhipeng LIU . Recent developments of inorganic metal complex-based photothermal materials and their applications in photothermal therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2356-2372. doi: 10.11862/CJIC.20240254

    20. [20]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

Metrics
  • PDF Downloads(2)
  • Abstract views(770)
  • HTML views(85)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return