Citation: AISHA· Nulahong, MO Wen-long, MA Feng-yun. Effect of preparation parameters on the gold particle size of Au/HZSM-5[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(6): 710-717. shu

Effect of preparation parameters on the gold particle size of Au/HZSM-5

  • Corresponding author: AISHA· Nulahong, aisa705@163.com
  • Received Date: 17 December 2015
    Revised Date: 18 March 2016

Figures(10)

  • A serial of Au/HZSM-5 samples were prepared by vacuum deposition precipitation, cation exchange and vacuum sulfhydryl protection method. The effect of different preparation method, calcination temperature, calcination atmosphere and addition of potassium on the particle size and distribution of gold was invetigated. Based on the characterization of X-ray diffraction, ultraviolet-visible diffuse reflectance spectroscopy and transmission electron microscope, it was found that the gold particle size of Au/HZSM-5 was changed greatly with different preparation methods. Gold particle size (about 2-5nm) of Au/HZSM-5 prepared by vacuum sulfhydryl protection was obviously smaller than that of the other preparation methods. Taken Au/HZSM-5 catalyst prepared by vacuum deposition precipitation as an example, low calcination temperature and inert atmosphere (nitrogen and argon) were favorable to the good dispersion of gold particles. The activities and carbonylation selectivities of syngas on Au/HZSM-5 catalysts were evaluated by a micro-fixed pulse reactor. 48% of syngas conversion and 52% of methyl acetate selectivity were obtained at reaction temperature of 350℃ over Au/HZSM-5 catalysts with 1.86% Au loading, calcined in air, while 59% and 70% were obtained over catalyst calcined in argon. By contrast, 67% of syngas conversion and 78% of methyl acetate selectivity were obtained over the catalyst calcined in nitrogen plasma.
  • 加载中
    1. [1]

      HARUTA M, KOBAYASHI T, SANO H, YAMADA N. Novel gold catalysts for the oxidation of carbon-monoxide at a temperature far below 0℃[J]. Chem Lett, 1987,16(2):405-408. doi: 10.1246/cl.1987.405

    2. [2]

      PESTRYAKOV A, BOGDANCHIKOVA N, SIMAKOV A, TUZOVSKAYA I, JENTOFT F, MAFISA M, DIAZ A. Catalytically active gold clusters and nanoparticles for CO oxidation[J]. Surf Sci, 2007,601(18):3792-3795. doi: 10.1016/j.susc.2007.04.012

    3. [3]

      SIMAKOV A, TUZOSKAYA I, BOGDANCHIKOVA N, PESTRYAKOV A, AVALOS M, FARIAS M H, MAFISA M, SMOLENTSEVA E. Influence of sodium on activation of gold species in Y-zeolites[J]. Catal Commun, 2008,9(6):1277-1281. doi: 10.1016/j.catcom.2007.11.027

    4. [4]

      DING Xiao-tao, ZHANG Pei-qing, AN Li-dun, QI Cai-xia. Progress in research of microporous zeolites supported nano-gold catalysts[J]. J Mol Catal, 2010,24(1):93-98.  

    5. [5]

      BLOCK B P, BAILAR J C. The reaction of gold (Ⅲ) with some bidentate co rdinating groups1[J]. J Am Chem Soc, 1951,73(10):4722-4725. doi: 10.1021/ja01154a071

    6. [6]

      ZHENG N, FAN J, STUCKY G D. One-step one-phase synthesis of monodisperse noble-metallic nanoparticles and their colloidal crystals[J]. J Am Chem Soc, 2006,128(20):6550-6551. doi: 10.1021/ja0604717

    7. [7]

      ZHENG N, STUCKY G D. A general synthetic strategy for oxide-supported metal nanoparticle catalysts[J]. J Am Chem Soc, 2006,128(44):14278-14280. doi: 10.1021/ja0659929

    8. [8]

      TUZOSKAYA I, BOGDANCHIKOVA N, SIMAKOV A, JURIN V, PESTRYAKOV A, AVALOS M, FARIAS M H. Structure and electronic states of gold species in mordenites[J]. Chem Phys, 2007,338(1):23-32. doi: 10.1016/j.chemphys.2007.07.026

    9. [9]

      PESTRYAKOV A, TUZOSKAYA I, SMOLENTSEVA E, BOGDANCHIKOVA N, JENTOFT F, KNOP-GERICKE A. Formation of gold nanoparticles in zeolites[J]. Int J Mod Phys B, 2005,19(15/17):2321-2326.

    10. [10]

      WANG Z, XIE Y, LEIU C. Synthesis and characterization of noble metal (Pd, Pt, Au, Ag) nanostructured materials confined in the channels of mesoporous SBA-15[J]. J Phy Chem C, 2008,112(50):19818-19824. doi: 10.1021/jp805538j

    11. [11]

      LI Y, JANG B W L. Non-thermal RF plasma effects on surface properties of Pd/TiO2 catalysts for selective hydrogenation of acetylene[J]. Appl Catal A:Gen, 2011,392(1/2):173-179.  

    12. [12]

      LIU X Y, MOU C Y, LEE S, LI Y N, SECREST J, JANG B W L. Room temperature O2 plasma treatment of SiO2 supported Au catalysts for selective hydrogenation of acetylene in the presence of large excess of ethylene[J]. J Catal, 2012,285(1):152-159. doi: 10.1016/j.jcat.2011.09.025

    13. [13]

      SOBCZAK I, RYDZ M, ZIOLEK M. The effect of alkali metal on the surface properties of potassium doped Au-Beta zeolites[J]. Mater Res Bull, 2013,48(2):795-801. doi: 10.1016/j.materresbull.2012.11.063

    14. [14]

      QIN Ming-lei. Prepration of metal phosphides by hydrogen plasma reduction and their catalytic performance in hydrodesulfurization. Dalian:Dalian University of Technology, 2011.

    15. [15]

      XIE Ke-chang, LI Zhong. Methanol and its Ramifications[M]. Beijing:Chemical Industry Press, 2002.

  • 加载中
    1. [1]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    2. [2]

      Kexin DongChuqi ShenRuyu YanYanping LiuChunqiang ZhuangShijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-0. doi: 10.3866/PKU.WHXB202310013

    3. [3]

      Heng ChenLonghui NieKai XuYiqiong YangCaihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019

    4. [4]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

    5. [5]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    6. [6]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    7. [7]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    8. [8]

      Wanchun Zhu Yongmei Liu Li Wang Yunshan Bai Shu'e Song Xiaokui Wang Zhongyun Wu Hong Yuan Yunchao Li Fuping Tian Yuan Chun Jianrong Zhang Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement and Control of Temperature. University Chemistry, 2025, 40(5): 128-136. doi: 10.12461/PKU.DXHX202503028

    9. [9]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    10. [10]

      Mingxin LULiyang ZHOUXiaoyu XUXiaoying FENGHui WANGBin YANJie XUChao CHENHui MEIFeng GAO . Preparation of La-doped lead-based piezoelectric ceramics with both high electrical strain and Curie temperature. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 329-338. doi: 10.11862/CJIC.20240206

    11. [11]

      Jianfu Zhang Wei Bai Juan Hou Chenyang Zou . Reform and Practice of “Project-Patent- Scholarly Paper” Integrated Teaching Mode: Taking “Polymer Processing” Course as an Example. University Chemistry, 2025, 40(4): 138-146. doi: 10.12461/PKU.DXHX202408138

    12. [12]

      Zhixin Zhou Ran Chen Yuanjian Zhang Songqin Liu Yanfei Shen . 分析化学课程本硕一体化的全英文教学改革. University Chemistry, 2025, 40(6): 64-70. doi: 10.12461/PKU.DXHX202407093

    13. [13]

      Ke ZhaoZhen LiuLuyao LiuChangyuan YuJingshun PanXuguang Huang . Functionalized Reflective Structure Fiber-Optic Interferometric Sensor for Trace Detection of Lead Ions. Acta Physico-Chimica Sinica, 2024, 40(4): 2304029-0. doi: 10.3866/PKU.WHXB202304029

    14. [14]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    15. [15]

      Lijun Huo Mingcun Wang Tianyi Zhao Mingjie Liu . Exploration of Undergraduate and Graduate Integrated Teaching in Polymer Chemistry with Aerospace Characteristics. University Chemistry, 2024, 39(6): 103-111. doi: 10.3866/PKU.DXHX202312059

    16. [16]

      Qiying Xia Guokui Liu Yunzhi Li Yaoyao Wei Xia Leng Guangli Zhou Aixiang Wang Congcong Mi Dengxue Ma . Construction and Practice of “Teaching-Learning-Assessment Integration” Model Based on Outcome Orientation: Taking “Structural Chemistry” as an Example. University Chemistry, 2024, 39(10): 361-368. doi: 10.3866/PKU.DXHX202311007

    17. [17]

      Xiaoyang Li Xiaowei Huang Yimeng Zhang Huan Liu Shao Jin Junpeng Zhuang . Comprehensive Chemical Experiments on the Synthesis of 1,3-Dibromo-5,5-Dimethylhydantoin and Its Application as a Brominating Reagent. University Chemistry, 2025, 40(7): 286-293. doi: 10.12461/PKU.DXHX202408035

    18. [18]

      Guowen Xing Guangjian Liu Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058

    19. [19]

      Jiaxuan ZuoKun ZhangJing WangXifei Li . Nucleation Regulation and Mechanism of Precursors for Nickel Cobalt Manganese-based Cathode Materials in Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100009-0. doi: 10.3866/PKU.WHXB202404042

    20. [20]

      Jiandong LiuXin LiDaxiong WuHuaping WangJunda HuangJianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039

Metrics
  • PDF Downloads(0)
  • Abstract views(983)
  • HTML views(127)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return