Citation: Hong Jiajin, Liu Yong, Chen Jialiang, Ma Kefeng. Progress in Ionic Liquids of Biological Engineering[J]. Chemistry, ;2018, 81(12): 1072-1077. shu

Progress in Ionic Liquids of Biological Engineering

  • Corresponding author: Ma Kefeng, makefeng@njust.edu.cn
  • Received Date: 8 May 2018
    Accepted Date: 19 September 2018

Figures(5)

  • Ionic liquids (ILs) have many excellent properties such as non-volatility, nonflammability, high ionic conductivity, physicochemical stability, wide electrochemical window, structural diversity and designability. In recent years, they have played a vital role in electrochemistry, biology, green chemistry, etc. This article mainly reviews some applications of ILs in biology. Firstly, the target gene or drug is expected to be delivered by ILs as an ideal carrier to target cells for therapeutic purposes. Secondly, the toxicity effects of ILs on organisms have been explored on purpose for killing cancer cells and other special cells or green degradation. Thirdly, the good electrocatalytic activity and high sensitivity of ILs can lead to preparations of biosensors for electrochemical detections. Finally, ILs can be used as the carrier for separations of nucleic acids, simplifying the separation process and improving the efficiency.
  • 加载中
    1. [1]

    2. [2]

      K R Seddon. J. Chem. Technol. Biotechnol., 1997, 68(4):351~356. 

    3. [3]

      A García, R González, A H Battez et al. Tribol. Int., 2014, 72(4):42~50.

    4. [4]

    5. [5]

      C P Mehnert. Chem. Eur. J., 2005, 11(1):50~56. 

    6. [6]

      P J Dyson. Biphasic Chemistry Utilising Ionic Liquids//Fall Meeting of the Swiss-Chemical-Society. 2005: 66~71.

    7. [7]

       

    8. [8]

       

    9. [9]

      P J Dyson. Transit. Met. Chem., 2002, 27(4):353~358. 

    10. [10]

      P Y Teo, W Cheng, J L Hedrick et al. Adv. Drug Deliv. Rev., 2016, 98:41~63. 

    11. [11]

      L Naldini. Nature, 2015, 526(7573):351~360. 

    12. [12]

      T G Park, J H Jeong, S W Kim. Adv. Drug Deliv. Rev., 2006, 58(4):467~486.

    13. [13]

      Y Yue, C Wu. Biomater. Sci., 2013, 1(2):152~170. 

    14. [14]

      D Schaffert, E Wagner. Gene Ther., 2008, 15(16):1131~1138. 

    15. [15]

      M A Mintzer, E E Simanek. Chem. Rev., 2008, 109(2):259~302.

    16. [16]

      S K Samal, M Dash, V S Van et al. Chem. Soc. Rev., 2012, 41(21):7147~7194. 

    17. [17]

      K Manojkumar, K T Prabhu Charan, A Sivaramakrishna et al. Biomacromolecules, 2015, 16(3):894~903. 

    18. [18]

      R R Mazid, A Cooper, Y Zhang et al. RSC Adv., 2015, 5(54):43839~43844. 

    19. [19]

      M Isik, M Agirre, J Zarate et al. J. Polym. Sci. A, 2017, 55(2):280~287. 

    20. [20]

      M H Allen Jr, M D Green, H K Getaneh et al. Biomacromolecules, 2011, 12(6):2243~2250. 

    21. [21]

      Y Wang, L Wang, M Yan et al. ACS Appl. Mater. Interf., 2017, 9(34):28185~28194. 

    22. [22]

      S Pandey. Anal. Chim. Acta, 2006, 556(1):38~45.

    23. [23]

      M Opallo, A Lesniewski. J. Electroanal. Chem., 2011, 656(1/2):2~16.

    24. [24]

      B Jagannath, S Muthukumar, S Prasad. Anal. Chim. Acta, 2018, 1016:29~39. 

    25. [25]

      R D Munje, S Muthukumar, B Jagannath et al. Sci. Rep., 2017, 7(1):1950.

    26. [26]

      C Y Xue, K L Yang. Langmuir, 2008, 24(2):563~567. 

    27. [27]

      H Tan, S Yang, G Shen et al. Angew. Chem., 2010, 122(46):8790~8793. 

    28. [28]

      D Zhao, Y Peng, L Xu et al. ACS Appl. Mater. Interf., 2015, 7(42):23418~23422. 

    29. [29]

      N Maleki, A Safavi, F Tajabadi. Anal. Chem., 2006, 78(11):3820~3826. 

    30. [30]

      W Sun, D Wang, G Li et al. Electrochim. Acta, 2008, 53(28):8217~8221. 

    31. [31]

      W Sun, P Qin, R Zhao et al. Talanta, 2010, 80(5):2177~2181. 

    32. [32]

      K Liu, J Zhang, G Yang et al. Electrochem. Commun., 2010, 12(3):402~405. 

    33. [33]

      W Sun, X Qi, Y Zhang et al. Electrochim. Acta, 2012, 85(4):145~151.

    34. [34]

      Q Zhu, F Gao, Y Yang et al. Sens. Actuat. B, 2015, 207:819~826. 

    35. [35]

      W Zhang. Sens. Actuat. B, 2013, 176:386~389. 

    36. [36]

      W Sun, X Wang, W Wang et al. J. Solid State Electrochem., 2015, 19(8):2431~2438. 

    37. [37]

      X Lu, J Hu, X Yao et al. Biomacromolecules, 2006, 7(3):975~980. 

    38. [38]

      X Lu, Q Zhang, L Zhang et al. Electrochem. Commun., 2006, 8(5):874~878. 

    39. [39]

      G Bolat, S Abaci. Sensors, 2018, 18(3):773. 

    40. [40]

      A Safavi, F Farjami. Biosens. Bioelectron., 2011, 26(5):2547~2552. 

    41. [41]

      A I Gopalan, K P Lee, D Ragupathy. Biosens. Bioelectron., 2009, 24(7):2211~2217. 

    42. [42]

      Z Zhu, L Qu, X Li et al. Electrochim. Acta, 2010, 55(20):5959~5965. 

    43. [43]

      E Eksin, M Muti, A Erdem. Electroanalysis, 2013, 25(10):2321~2329.

    44. [44]

      C Sengiz, G Congur, A Erdem. Sensors, 2015, 15(9):22737~22749. 

    45. [45]

      J Deng, W Liang, J Fang. ACS Appl. Mater. Interf., 2016, 8(6):3928~3932. 

    46. [46]

      D Chen, L Tang, J Li. Chem. Soc. Rev., 2010, 39(8):3157~3180. 

    47. [47]

      J Zhao, G Chen, L Zhu et al. Electrochem. Commun., 2011, 13(1):31~33. 

    48. [48]

      Y Zhang, L Huang. Microchim. Acta, 2012, 176(3/4):463~470.

    49. [49]

      A Erdem, M Muti, F Mese et al. Colloids Surf. B, 2014, 114:261~268. 

    50. [50]

      H Kazerooni, B Nasernejad. J. Appl. Electrochem., 2015, 45(12):1289~1298. 

    51. [51]

      J Y Huang, L Zhao, W Lei et al. Biosens. Bioelectron., 2018, 99:28~33. 

    52. [52]

      H Schwarzenbach, D S Hoon, K Pantel. Nat. Rev. Cancer, 2011, 11(6):426~437. 

    53. [53]

      J I Cutler, E Auyeung, C A Mirkin. J. Am. Chem. Soc., 2012, 134(3):1376~1391. 

    54. [54]

      Z Guo, Q L Liu. Nat. Biotechnol., 1997, 15(4):331~335. 

    55. [55]

      S Hayashi, H Hamaguchi. Chem. Lett., 2004, 33(12):1590~1591. 

    56. [56]

      B Mallick, B Balke, C Felser et al. Angew. Chem. Int. Ed., 2008, 47(40):7635~7638. 

    57. [57]

      K D Clark, M Varona, J L Anderson. Angew. Chem. Int. Ed., 2017, 56(26):7630~7633. 

    58. [58]

      O Nacham, K D Clark, J L Anderson. Anal. Chem., 2016, 88(15):7813~7820. 

    59. [59]

      D L Kim, H Vovusha, U Schwingenschlögl et al. J. Membrane Sci., 2017, 539:161~171. 

    60. [60]

      O Nacham, K D Clark, M Varona et al. Anal. Chem., 2017, 89(20):10661~10666. 

    61. [61]

      R F M Frade, A A Rosatella, C S Marques et al. Green Chem., 2009, 11(10):1660~1665. 

    62. [62]

      J Ranke, K Mölter, F Stock et al. Ecotoxicol. Environ. Safety, 2004, 58(3):396~404. 

    63. [63]

      R A Kumar, N Papaïconomou, J M Lee et al. Environ. Toxicol., 2009, 24(4):388~395. 

    64. [64]

      B Jastorff, K Mölter, P Behrend et al. Green Chem., 2005, 7(5):362~372. 

    65. [65]

      Z Du, L Zhu, M Dong et al. Aquat. Toxicol., 2012, 124:91~93.

    66. [66]

      Z Zhang, J Liu, X Cai et al. Environ. Sci. Technol., 2011, 45(4):1688~1694. 

    67. [67]

      K M Docherty, C F Kulpa Jr. Green Chem., 2005, 7(4):185~189. 

    68. [68]

      P Nan, S Yan, Y Wang et al. Environ. Toxicol., 2017, 32(2):404~416. 

    69. [69]

      C Robert, F L Barnes, I Hue et al. Mol. Reprod. Dev., 2000, 57(2):167~175. 

    70. [70]

      H Akbas, A Karadag, A Aydin et al. J. Mol. Liq., 2017, 230:482~495. 

    71. [71]

      E M Siedlecka, W Mrozik, Z Kaczyński et al. J. Hazard. Mater., 2008, 154(1/3):893~900.

    72. [72]

      E M Siedlecka, P Stepnowski. Environ. Sci. Pollut. Res., 2009, 16(4):453~458. 

    73. [73]

      C Zhang, S V Malhotra, A J Francis. Chemosphere, 2011, 82(11):1690~1695. 

    74. [74]

      N Gathergood, P J Scammells, M T Garcia. Green Chem., 2006, 8(2):156~160. 

    75. [75]

      V R Thamke, K M Kodam. J. Hazard. Mater., 2016, 320:408~416. 

  • 加载中
    1. [1]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    2. [2]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

    3. [3]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    4. [4]

      Yameen AhmedXiangxiang FengYuanji GaoYang DingCaoyu LongMustafa HaiderHengyue LiZhuan LiShicheng HuangMakhsud I. SaidaminovJunliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057

    5. [5]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    6. [6]

      Xinyi ZhangKai RenYanning LiuZhenyi GuZhixiong HuangShuohang ZhengXiaotong WangJinzhi GuoIgor V. ZatovskyJunming CaoXinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057

    7. [7]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    8. [8]

      Zeqiu ChenLimiao CaiJie GuanZhanyang LiHao WangYaoguang GuoXingtao XuLikun Pan . Advanced electrode materials in capacitive deionization for efficient lithium extraction. Acta Physico-Chimica Sinica, 2025, 41(8): 100089-0. doi: 10.1016/j.actphy.2025.100089

    9. [9]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    10. [10]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    11. [11]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    12. [12]

      Shuhui Li Rongxiuyuan Huang Yingming Pan . Electrochemical Synthesis of 2,5-Diphenyl-1,3,4-Oxadiazole: A Recommended Comprehensive Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 357-365. doi: 10.12461/PKU.DXHX202407028

    13. [13]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    14. [14]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    15. [15]

      Yifei Cheng Jiahui Yang Wei Shao Wanqun Zhang Wanqun Hu Weiwei Li Kaiping Yang . Learning Goes Beyond the Written Word: Practical Insights from the “Leaf Electroplating” Popular Science Experiment. University Chemistry, 2024, 39(9): 319-327. doi: 10.3866/PKU.DXHX202310033

    16. [16]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    17. [17]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    18. [18]

      Zehao ZhangZheng WangHaibo Li . Preparation of 2D V2O3@Pourous Carbon Nanosheets Derived from V2CFx MXene for Capacitive Desalination. Acta Physico-Chimica Sinica, 2024, 40(8): 2308020-0. doi: 10.3866/PKU.WHXB202308020

    19. [19]

      Yang MeiqingLu WangHaozi LuYaocheng YangSong Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 2310046-0. doi: 10.3866/PKU.WHXB202310046

    20. [20]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

Metrics
  • PDF Downloads(5)
  • Abstract views(121)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return