Citation: LÜ Jian-yi, DENG Xiao-chuan, LU Yi-hai, FU Li-li, HU Zhi-guang, XU Bing-yi. Charge performance for co-combustion ash of biomass and coal[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(4): 401-407. shu

Charge performance for co-combustion ash of biomass and coal

  • Corresponding author: LÜ Jian-yi, lujianyi@tsinghua.org.cn
  • Received Date: 29 October 2015
    Revised Date: 22 January 2016

Figures(12)

  • The charge performance of ash generated from co-combustion of different types of coals and biomass fuel (corn stalk) was studied using faraday-cup detector and electrical low pressure impactor (ELPI). The results show that the charge capacity of co-combustion ash rises a little with the increase of biomass in fuel mixture. The reason is that different types of co-combustion ash have different chemical compositions and structural features. This improves the relative dielectric constant, specific resistance and surface adsorptive ability, and thus promotes the charge performance of co-combustion ash. Although the addition of biomass in fuel mixture raises the charge capacity of co-combustion ash, particle size is still the main influence factor on its charge performance.
  • 加载中
    1. [1]

       

    2. [2]

      ZHANG Jian-liang, LI Jing, HU Zheng-wen, YIN Shang-yi, ZUO Hai-bing, SU Bu-xing. Thermogravimetric analysis of co-combustion behaviors of biomass and anthracite[J]. Acta Energ Sol Sin, 2013,34(10):1847-1852.  

    3. [3]

      HU Ya-fan, MA Yu-fang, ZHANG Yong-gui. Biomass energy and its application technology[J]. Energy Conserv Technol, 2007,25(4):344-347.

    4. [4]

      HARDING N S, ADAMS B R. Biomass as reburning fuel a specialized cofiring application[J]. Biomass Bioenergy, 2000(19):429-445.  

    5. [5]

      TIAN Yi-shui, ZHAO Li-xin, MENG Hai-bo, YUAN Yan-wen. Research on co-firing of biomass and coal[J]. Water Conserv Elect Power Mach, 2006,28(12):87-91.  

    6. [6]

      SAHU S G, CHAKRABORTY N, SARKAR P. Coal-biomass co-combustion: An overview[J]. Renewable Sustainable Energy Rev, 2014,11(39):575-586.

    7. [7]

      TAMURA M, WATANABE S, KOTAKE N, HASEGAWA M. Grinding and combustion characteristics of woody biomass for co-firing with coal in pulverised coal boilers[J]. Fuel, 2014,134(15):544-553.  

    8. [8]

      ZHANG Xiao-xiao, YANG Dong, ZHANG Lin-hua. Research status on combustion characteristics of co-firing of biomass and coal[J]. Energy Conserv Technol, 2011,29(6):483-485.  

    9. [9]

      CAI Li-hong, YUAN Yong-tao, LU Jian-yi. Specific resistance characteristics of ash from co-combustion of biomass and coal[J]. J Fuel Chem Technol, 2011,39(10):741-745.  

    10. [10]

      WANG Jin-xing, LI Chao, LIU Hui-min, HUANG Jiang-cheng, WANG Chun-bo. Experimental study on combustion charateristics of bitumite/biomass blends[J]. Elect Power Sci Eng, 2012,28(2):56-59.  

    11. [11]

      CHEN Gui-wen, XIAO Deng-ming. Influencing factors and improvement measures of ESP dust removal efficiency[J]. Elect Power Environ Prot, 2007,23(6):7-9.  

    12. [12]

      QI Li-qiang, YUAN Yong-tao, YAN Wei-ping. Experimental study on the behavior of the high-alumina fly ash in electrostatic precipitators[J]. Proc CSEE, 2005,25(17):105-109.  

    13. [13]

       

    14. [14]

      E1755-01(2007), Standard test method for ash in biomass[S]. 2007. 

    15. [15]

      LIU Wei-jun, CHEN Shuan-zhu, ZHANG Shu-hua. A review and elementary discussion of powder and pulverized-coal charge[J]. Energy Conserv, 2007(8):10-13.  

    16. [16]

      ZHANG Bao-feng, ZHANG Lian-hong, LI Shuang-yi. Investigation on the measurement of artificial electric charge[J]. J Tianjin Univ, 2002,35(6):696-698.  

    17. [17]

      ZENG Yu-feng, CHENG Bei-shan. Measuring eectric charge of small particle by home-made faraday-cup[J]. Exp Technol Manage, 2013,30(4):55-57.  

    18. [18]

      LONG Zheng-Wei, YAO Qiang, HUANG Bin, SONG Qiang. Measurment of the particle's charge distribution using the electrical low-pressure impactor(ELPI)[J]. J Eng Thermophys, 2006,27(2):354-356.  

    19. [19]

      HELD A, ZERRATH A, MCKEON U, FEHRENBACH T, NIESSNER R, PLASS-DULMER C, KAMINSKI U, BERRESHEIM H, POSCHL U. Aerosol size distributions measured in urban, rural and high-alpine air with an electrical low pressure impactor (ELPI)[J]. Atmos Environ, 2008,42(36):8502-8512. doi: 10.1016/j.atmosenv.2008.06.015

    20. [20]

      TANG Min-kang, FENG Guo-jun. The analysis on affecting factors of dust ratio resistance and their responding measures[J]. J Jiangxi Univ Sci Technol, 2007,28(3):44-46.  

    21. [21]

      ZHANG Chang-he, LI Jing, LIU Zong-hui. Calculation of electrical charge for fraction particles with high volume[J]. J Huazhong Univ Sci Technol (Nat Sci Ed), 2006,34(1):53-56.  

    22. [22]

      LIU Hai-yu, JING Bo, FAN Bao-guo, JIN Yan. Research on dielectric property of the metal oxides on fly ash at low frequency[J]. J Eng Thermophys, 2014,35(4):801-805.  

  • 加载中
    1. [1]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

    2. [2]

      Yuhang Jiang Weijie Liu Jiaqi Cai Jiayue Chen Yanping Ren Pingping Wu Liulin Yang . A Journey into the Science and Art of Sugar: “Dispersion of Light and Optical Rotation of Matter” Science Popularization Experiment. University Chemistry, 2024, 39(9): 288-294. doi: 10.12461/PKU.DXHX202401054

    3. [3]

      Qingyang Cui Feng Yu Zirun Wang Bangkun Jin Wanqun Hu Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046

    4. [4]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    5. [5]

      Meiyu Lin Yuxin Fang Songzhang Shen Yaqian Duan Wenyi Liang Chi Zhang Juan Su . Exploration and Implementation of a Dual-Pathway Blended Teaching Model in General Chemistry Experiment Course: A Case Study of Copper Glycine Synthesis and Its Thermal Analysis. University Chemistry, 2024, 39(8): 48-53. doi: 10.3866/PKU.DXHX202312042

    6. [6]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    7. [7]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    8. [8]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

    9. [9]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

    10. [10]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    11. [11]

      Liangliang Song Haoyan Liang Shunqing Li Bao Qiu Zhaoping Liu . 超高比能电池高锰富锂层状氧化物正极材料面临的挑战与解决策略. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-. doi: 10.1016/j.actphy.2025.100085

    12. [12]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    13. [13]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    14. [14]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    15. [15]

      Zhibei Qu Changxin Wang Lei Li Jiaze Li Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039

    16. [16]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    17. [17]

      Yang Liu Peng Chen Lei Liu . Chemistry “101 Plan”: Design and Construction of Chemical Biology Textbook. University Chemistry, 2024, 39(10): 45-51. doi: 10.12461/PKU.DXHX202407085

    18. [18]

      Tianyu Feng Guifang Jia Peng Zou Jun Huang Zhanxia Lü Zhen Gao Chu Wang . Construction of the Chemistry Biology Experiment Course in the Chemistry “101 Program”. University Chemistry, 2024, 39(10): 69-77. doi: 10.12461/PKU.DXHX202409002

    19. [19]

      Zhaoxin LIRuibo WEIMin ZHANGZefeng WANGJing ZHENGJianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235

    20. [20]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

Metrics
  • PDF Downloads(1)
  • Abstract views(1438)
  • HTML views(204)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return