Citation: ZI Zhong-yue, LI Bing-shuang, GE Yuan-zheng, LIU Guang-bo, LI Jian-qing, WU Jin-hu. Research on propene oligomerization reaction over the Fenton's reagent modified ZSM-5[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(8): 986-992. shu

Research on propene oligomerization reaction over the Fenton's reagent modified ZSM-5

  • Corresponding author: LI Jian-qing,  WU Jin-hu, wujh@qibebt.ac.cn
  • Received Date: 7 April 2020
    Revised Date: 7 July 2020

    Fund Project: The project was supported by the National Key R&D Program of China (2018YFB1501403), Strategic Priority Research Program of Chinese Academy of Sciences (XDA21060800), the National Natural Science Foundation of China (U1610254) and the Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences (Y372081100)the Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences Y372081100the National Key R&D Program of China 2018YFB1501403Strategic Priority Research Program of Chinese Academy of Sciences XDA21060800the National Natural Science Foundation of China U1610254

Figures(5)

  • ZSM-5 zeolite was modified by Fenton's reagent, FeSO4 and H2O2 aqueous solutions using impregnation method, respectively. All these catalysts were characterized by XRD, ICP-OES, N2 adsorption-desorption, NH3-TPD, Py-FTIR and evaluated in propene oligomerization process. The results demonstrated that the framework of the parent ZSM-5 was well preserved after modification with Fenton's reagent, FeSO4 or H2O2 solutions. However, the SiO2/Al2O3 ratios for all the modified ZSM-5 samples increased due to the dealumination. Furthermore, Fe was detected in Fenton-ZSM-5 while no Fe was observed for FeSO4-ZSM-5 catalyst. The BET surface areas and total pore volumes of three modified catalysts significantly increased compared with the original ZSM-5 sample. Among them, the BET surface area of the Fenton-ZSM-5 increased by 17.86%.The increase of mesopores was probably caused by the removal of the residual organic template in the catalysts due to the generation of·OH radicals by Fenton's reagent and H2O2. The Fenton-ZSM-5 catalyst formed new acid sites of Brønsted (B) and Lewis (L) with little change in the total calculated amount, which significantly changed the B/L ratio. Compared with the parent ZSM-5, the Fenton-ZSM-5 catalyst exhibited the best activity and stability for propene oligomerization reaction. The initial propene conversion and diesel selectivity were as high as 98.3% and 92.4%, respectively, and kept at >80% and >82% for about 24 h, respectively.
  • 加载中
    1. [1]

      KIM Y T, CHADA J P, XU Z Y, PAGAN-TORRES J, ROSENFELD D C, WINNIFORD W L, SCHMIDT E, HUBER G W. Low-temperature oligomerization of 1-butene with H-ferrierite[J]. J Catal, 2015,323:33-44. doi: 10.1016/j.jcat.2014.12.025

    2. [2]

      ZHONG L S, YU F, AN Y L, ZHAO Y H, SUN Y H, LI Z J, LIN T J, LIN Y J, QI X Z, DAI Y Y, GU L, HU J S, JIN S F, SHEN Q, WANG H. Cobalt carbide nano prisms for direct production of lower olefins from syngas[J]. Nature, 2016,538(7623):84-87. doi: 10.1038/nature19786

    3. [3]

      CORMA A, MARTÍNEZ C, DOSKOCIL E. Designing MFI-based catalysts with improved catalyst life for C3 and C5 oligomerization to high-quality liquid fuels[J]. J Catal, 2013,300:183-196. doi: 10.1016/j.jcat.2012.12.029

    4. [4]

      WULFERS M J, LOBO R F. Assessment of mass transfer limitations in oligomerization of butene at high pressure on H-beta[J]. Appl Catal A:Gen, 2015,505:394-401. doi: 10.1016/j.apcata.2015.08.016

    5. [5]

      MARTÍNEZ C, CORMA A. Inorganic molecular sieves:Preparation, modification and industrial application in catalytic processes[J]. Coord Chem Rev, 2011,255(13/14):1558-1580.  

    6. [6]

      MOON S, CHAE H, PARK M B. Oligomerization of light olefins over ZSM-5 and beta zeolite catalysts by modifying textural properties[J]. Appl Catal A:Gen, 2018,553:15-23. doi: 10.1016/j.apcata.2018.01.015

    7. [7]

      COETZEE J H, MASHAPA T N, PRINSLOO N M, RADEMAN J D. An improved solid phosphoric acid catalyst for alkene oligomerization in a Fischer-Tropsch refinery[J]. Appl Catal A:Gen, 2006,308:204-209. doi: 10.1016/j.apcata.2006.04.023

    8. [8]

      VAN GRIEKEN R, ESCOLA , ESCOLA J M, MORENO J, RODRIGUEZ R. Liquid phase oligomerization of 1-hexene over different mesoporous aluminosilicates (Al-MTS, Al-MCM-41 and Al-SBA-15) and micrometer/nanometer HZSM-5 zeolites[J]. Appl Catal A:Gen, 2006,305(2):176-188. doi: 10.1016/j.apcata.2006.02.058

    9. [9]

      PERATELLO S, MOLINARI M, BELLUSSI G, PEREGO C. Olefins oligomerization:Thermodynamics and kinetics over a mesoporous silica-alumina[J]. Catal Today, 1999,52(2/3):271-277.  

    10. [10]

      CATANI R, MANDREOLI M, ROSSINI S, VACCAR I. Mesoporous catalysts for the synthesis of clean diesel fuels by oligomerisation of olefins[J]. Catal Today, 2002,75(1/4):125-131.  

    11. [11]

      GALYA L G, OCCELLI M L, HSU J T, YOUNG D C. Propylene oligomerization over molecular sieves:Part II. 1H NMR and 13C NMR characterization of reaction products[J]. J Mol Catal, 1985,32(3):391-403. doi: 10.1016/0304-5102(85)85093-8

    12. [12]

      BELLUSSI G, MIZIA F, CALEMMA V, POLLESEL P, MILLINI R. Oligomerization of olefins from light cracking naphtha over zeolite-based catalyst for the production of high quality diesel fuel[J]. Microporous Mesoporous Mater, 2012,164:127-134. doi: 10.1016/j.micromeso.2012.07.020

    13. [13]

      CATHERINE S, CHEN H, ROBERT F, BRIDGE R. Shape-selective oligomerization of alkenes to near-linear hydrocarbons by zeolite catalysis[J]. J Catal, 1996,161(2):687-693. doi: 10.1006/jcat.1996.0230

    14. [14]

      QUANN R J, GREEN L A, TABAK S A, KRAMBECK F J. Chemistry of olefin oligomerization over ZSM-5 catalyst[J]. Chem Res, 1988,27(4):565-570.  

    15. [15]

      HUANG X, AIHEMAITIJIANG D, XIAO W D. Reaction pathway and kinetics of C3-C7 olefin transformation over high-silicon HZSM-5 zeolite at 400-490 degrees C[J]. Chem Eng J, 2015,280:222-232. doi: 10.1016/j.cej.2015.05.124

    16. [16]

      CHEN C J, RANGARAJAN S, HILL I M, BHAN A. Kinetics and Thermochemistry of C4-C6 Olefin Cracking on H-ZSM-5[J]. ACS Catal, 2014,4(7):2319-2327. doi: 10.1021/cs500119n

    17. [17]

      SILVA A F, FERNANDES A, ANTUNES M M, NEVES P, ROCHA S M, RIBEIRO M F, PILLINGER M, RIBEIRO J, SILVA C M, VALENTE A A. Kinetics and thermochemistry of C4-C6 olefin cracking on H-ZSM-5[J]. Fuel, 2017,209(7):371-382.  

    18. [18]

      HULEA V, FAJULA F J. Ni-exchanged AlMCM-41-An efficient bifunctional catalyst for ethylene oligomerization[J]. Catal, 2004,225(1):213-222. doi: 10.1016/j.jcat.2004.04.018

    19. [19]

      MENG F J, WANG Y Q, WANG S H. Methanol to gasoline over zeolite ZSM-5:Improved catalyst performance by treatment with HF[J]. RSC Adv, 2016,6(63):58586-58593. doi: 10.1039/C6RA14513B

    20. [20]

      LI X M, HAN D Z, WANG H, LIU G B, WANG B, LI Z, WU J H. Propene oligomerization to high-quality liquid fuels over Ni/HZSM-5[J]. Fuel, 2015,144:9-14. doi: 10.1016/j.fuel.2014.12.005

    21. [21]

      FENG G D, CHENG P, YAN W F, BORONAT M, LI X, SU J H, WANG J, LI Y, CORMA A, XU R, YU J H. Accelerated crystallization of zeolites via hydroxyl free radicals[J]. Science, 2016,351(6278):1188-1191. doi: 10.1126/science.aaf1559

    22. [22]

      KONECNY R. Reactivity of hydroxyl radicals on hydroxylated quartz surface. 1. Cluster model calculations[J]. J Phys Chem B, 2001,105(26):6221-6226. doi: 10.1021/jp010752v

    23. [23]

      LI C, DU J, WANG H, LI X, ZHU S, LIU G, WU J H. A hemicellulose modified HZSM-5 and their application in the light olefins oligomerization to high-quality liquid fuels reaction[J]. Catal Commun, 2017,102:89-92. doi: 10.1016/j.catcom.2017.08.032

    24. [24]

      WANG Ming-ming, YAO Zhi-long, ZHAO Ru-song. Effects of H2O2 treatment on structure and catalytic performance of HZSM-5 molecular sieves for hydration of cyclohexene[J]. Ind Catal, 2011,19(9):39-44.  

    25. [25]

      CABRERA M L, KAPTEIJN F, MOULIJN J A. One-pot catalyst preparation:Combined detemplating and Fe ionexchange of BEA through Fenton's chemistry[J]. Chem Commun, 2005,16:2178-2180.

    26. [26]

      WU G, HEI F, GUAN N, LI L. Oxidative dehydrogenation of propane with nitrous oxide over Fe-MFI prepared by ion-exchange:Effect of acid post-treatments[J]. Catal Sci Technol, 2013,3(5):1333-1342. doi: 10.1039/c3cy20782j

    27. [27]

      LI J Q, HAN D Z, HE T, LIU G B, ZI Z Y, WANG Z J, WU J H. Nanocrystal H[J]. Fuel Processing Technol, 2019,191:104-110. doi: 10.1016/j.fuproc.2019.03.029

    28. [28]

      LIU Z, WU D, REN S, CHEN X, QIU M, LIU G, ZENG G, SUN Y. Facile one-pot solvent-free synthesis of hierarchical ZSM-5 for methanol to gasoline conversion[J]. RSC Adv, 2016,6(19):15816-15820. doi: 10.1039/C6RA00247A

    29. [29]

      WANG X, ZHANG J, ZHANG T, XIAO H, SONG F, HAN Y, TAN Y. Mesoporous ZnZSM-5 zeolites synthesized by one-step desilication and reassembly:A durable catalyst for methanol aromatization[J]. RSC Adv, 2016,6(28):23428-23437. doi: 10.1039/C6RA03511F

    30. [30]

      XU T, ZHANG Q, SONG H, WANG Y. Fluoride-treated H-ZSM-5 as a highly selective and stable catalyst for the production of propylene from methyl halides[J]. J Catal, 2012,295:232-241. doi: 10.1016/j.jcat.2012.08.014

    31. [31]

      NKOSI B, NG F T T, REMPEL G L. The oligomerization of butenes with partially alkali exchanged NiNaY zeolite catalysts[J]. Appl Catal A:Gen, 1997,158(12):225-241.  

  • 加载中
    1. [1]

      Yu Wang Haiyang Shi Zihan Chen Feng Chen Ping Wang Xuefei Wang . 具有富电子Ptδ-壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-. doi: 10.1016/j.actphy.2025.100081

    2. [2]

      Shanyuan BiJin ZhangDengchao PengDanhong ChengJianping ZhangLupeng HanDengsong Zhang . Improved N2 selectivity for low-temperature NOx reduction over etched ZSM-5 supported MnCe oxide catalysts. Chinese Chemical Letters, 2025, 36(5): 110295-. doi: 10.1016/j.cclet.2024.110295

    3. [3]

      Sikai Wu Xuefei Wang Huogen Yu . Hydroxyl-enriched hydrous tin dioxide-coated BiVO4 with boosted photocatalytic H2O2 production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100457-100457. doi: 10.1016/j.cjsc.2024.100457

    4. [4]

      Dong-Xue Jiao Hui-Li Zhang Chao He Si-Yu Chen Ke Wang Xiao-Han Zhang Li Wei Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304

    5. [5]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    6. [6]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    7. [7]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    8. [8]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

    9. [9]

      Xinyu You Xin Zhang Shican Jiang Yiru Ye Lin Gu Hexun Zhou Pandong Ma Jamal Ftouni Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265

    10. [10]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    11. [11]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    12. [12]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    13. [13]

      Xin LiWanting FuRuiqing GuanYue YuanQinmei ZhongGang YaoSheng-Tao YangLiandong JingSong Bai . Nucleophiles promotes the decomposition of electrophilic functional groups of tetracycline in ZVI/H2O2 system: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(10): 109625-. doi: 10.1016/j.cclet.2024.109625

    14. [14]

      Yunkang TongHaiqiao HuangHaolan LiMingle LiWen SunJianjun DuJiangli FanLei WangBin LiuXiaoqiang ChenXiaojun Peng . Cooperative bond scission by HRP/H2O2 for targeted prodrug activation. Chinese Chemical Letters, 2024, 35(12): 109663-. doi: 10.1016/j.cclet.2024.109663

    15. [15]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    16. [16]

      Jing Wang Zhongliao Wang Jinfeng Zhang Kai Dai . Single-layer crystalline triazine-based organic framework photocatalysts with different linking groups for H2O2 production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100202-100202. doi: 10.1016/j.cjsc.2023.100202

    17. [17]

      Zhenyu HuZhenchun YangShiqi ZengKun WangLina LiChun HuYubao Zhao . Cationic surface polarization centers on ionic carbon nitride for efficient solar-driven H2O2 production and pollutant abatement. Chinese Chemical Letters, 2024, 35(10): 109526-. doi: 10.1016/j.cclet.2024.109526

    18. [18]

      Hao LvZhi LiPeng YinPing WanMingshan Zhu . Recent progress on non-metallic carbon nitride for the photosynthesis of H2O2: Mechanism, modification and in-situ applications. Chinese Chemical Letters, 2025, 36(1): 110457-. doi: 10.1016/j.cclet.2024.110457

    19. [19]

      Shuangxi LiHuijun YuTianwei LanLiyi ShiDanhong ChengLupeng HanDengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240

    20. [20]

      Peiyan ZhuYanyan YangHui LiJinhua WangShiqing Li . Rh(Ⅲ)‐Catalyzed sequential ring‐retentive/‐opening [4 + 2] annulations of 2H‐imidazoles towards full‐color emissive imidazo[5,1‐a]isoquinolinium salts and AIE‐active non‐symmetric 1,1′‐biisoquinolines. Chinese Chemical Letters, 2024, 35(10): 109533-. doi: 10.1016/j.cclet.2024.109533

Metrics
  • PDF Downloads(1)
  • Abstract views(1420)
  • HTML views(162)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return