Citation: CUI Xiang-zheng, WEI Shu-zhou, ZHANG Jun-feng, ZHAO Yong-chun, ZHANG Jun-ying, ZHENG Chu-guang. State and leaching characteristics of Cr and As in the solid phase products of ultra-low emission coal-fired units[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(12): 1506-1512. shu

State and leaching characteristics of Cr and As in the solid phase products of ultra-low emission coal-fired units

  • Corresponding author: ZHAO Yong-chun, yczhao@hust.edu.cn
  • Received Date: 18 September 2020
    Revised Date: 23 October 2020

    Fund Project: the National R & D Program Project of China 2018YFB0605104the Key Research and Development Program of Hubei Province 2020BCA076the National Natural Science Fundation of China 42030807The project was supported by the National R & D Program Project of China(2018YFB0605104), the National Natural Science Fundation of China (42030807) and the Key Research and Development Program of Hubei Province(2020BCA076)

Figures(13)

  • The content and state and leaching characteristics of the two trace elements, viz., chromium (Cr) and arsenic (As), in the solid product of ultra-low emission units in the coal-fired power plants are investigated. The results show that the contents of chromium and arsenic in the fly ash are in general higher than those in the bottom slag. In the fly ash samples of units 1#, 2#, and 3#, the most abundant chromium and arsenic species appear in the exchangeable state and oxidizable state, respectively, whereas in the ash sample of unit 4#, the residues account for the most chromium and arsenic species. The leaching concentration of arsenic is lower than 0.01 mg/L as specified in the groundwater environmental standard (GB 14848—2017); however, the leaching concentration of chromium in the fly ash of 2# and 3# units is higher than the emission limit, to which close attention should be paid.
  • 加载中
    1. [1]

      WU Da. Research on the supply-side reform and development path of my country's coal industry[D]. Beijing: China University of Geosciences, 2016.

    2. [2]

      LI S, GAO L, JIN H G. Life cycle energy use and GHG emission assessment of coal-based SNG and power cogeneration technology in China[J]. Energy Convers Manage, 2016,112:91-100.

    3. [3]

      KIEBER R J, WILLEY J D, ZVALAREN S D. Chromium speciation in rainwater: Temporal variability and atmospheric deposition[J]. Environ Sci Technol, 2002,36(24):5321-5327.

    4. [4]

      COSTA M. Toxicity and carcinogenicity of Cr (VI) in animal models and humans[J]. Crit Rev Toxicol, 1997,27(5):431-442.

    5. [5]

      WANG J W, ZHANG Y S, LIU Z, NORRIS P, ROMERO C E, XU H, PAN W P. Effect of coordinated air pollution control devices in coal-fired power plants on Arsenic emissions[J]. Energy Fuels, 2017,31(7):7309-7316.

    6. [6]

      GONG Hong-yu, HU Hong-yun, LIU Hui-min, LI Shuai, HUANG Yong-da, FU Biao, LUO Guang-qian, YAO Hong. Overview of arsenic migration and transformation and control technology during coal combustion[J/OL]. Proceedings of the CSEE, 2020, 1-18.

    7. [7]

      DAI S F, REN D Y, CHOU C L, FINKELMAN R B, SEREDIN V V, ZHOU Y P. Geochemistry of trace elements in Chinese coals: A review of abundances, genetic types, impacts on human health, and industrial utilization[J]. Int J Coal Geol, 2012,94:3-21.

    8. [8]

      WANG C B, LIU H M, ZHANG Y, ZOU C, ANTHONY E J. Review of arsenic behavior during coal combustion: Volatilization, transformation, emission and removal technologies[J]. Prog Energy Combust Sci, 2018,68:1-28.

    9. [9]

      LI Li-yuan. Study on the occurrence and evolution of chromium during coal combustion[D]. Anhui: Anhui University, 2018.

    10. [10]

      COSTA M, KLEIN C B. Toxicity and carcinogenicity of chromium compounds in humans[J]. Crit Rev Toxicol, 2006,36(2):155-163.

    11. [11]

      ASSIS R C, FARIA B A A, CALDEIRA C L, MAGESTE A B, LEMOS L R, RODRIGUES G D. Extraction of arsenic(Ⅲ) in aqueous two-phase systems: A new methodology for determination and speciation analysis of inorganic arsenic[J]. Microchem J, 2019,147:429-436.

    12. [12]

      GUO M H, LI J, FAN S J, LIU W S, WANG B, GAO C L, ZHOU J, HAI X. Speciation analysis of arsenic in urine samples from APL patients treated with single agent As2O3 by HPLC-HG-AFS[J]. J Pharm Biomed Anal, 2019,171:212-217.

    13. [13]

      IGNACIO M, VALERY B, NELLY M. Total arsenic and inorganic arsenic speciation in groundwater intended for human consumption in Uruguay: Correlation with fluoride, iron, manganese and sulfate[J]. Sci Total Environ, 2019,681:497-502.

    14. [14]

      ZHAO Shi-lin, DUAN Yu-feng, ZHOU Qiang, ZHANG Jun, DU Hong-fei, TANG Hong-jian, LV Jian-hong. Experimental study on trace element emission characteristics of coal-fired circulating fluidized bed[J]. Proc CSEE, 2017,37(1):193-200.

    15. [15]

      LV Hai-liang, CHEN Hao-kan, LI Wen, LI Bao-qing. The occurrence of heavy metal elements in Tieling coal and their volatilization behavior during pyrolysis[J]. J Fuel Chem Technol, 2004,32(2):140-145.

    16. [16]

      YAN R, GAUTHIER D, FLAMANT G. Volatility and chemistry of trace elements in a coal combustor[J]. Fuel, 2001,80(15):2217-2226.

    17. [17]

      TANG Q, LIU G J, ZHOU C C, SUN R Y. Distribution of trace elements in feed coal and combustion residues from two coal-fired power plants at Huainan, Anhui, China[J]. Fuel, 2013,107:315-322.

    18. [18]

      SONG Dang-yu, ZHANG Jun-ying, ZHENG Chu-guang. Geochemical characteristics of harmful trace elements in coal in Guizhou Province[J]. Coal Convers, 2007,30(4):13-17.

    19. [19]

      ZHANG Zhen-fu, FAN Jin-chuan. The combined state of arsenic, lead, chromium and other elements in Xiaolongtan lignite[J]. Coal Convers, 1993,16(2):86-89.

    20. [20]

      ZHAO S L, DUAN Y F, LU J C, GUPTA R, PUDASAINEE D, LIU S, LIU M, LU J H. Thermal stability, chemical speciation and leaching characteristics of hazardous trace elements in FGD gypsum from coal-fired power plants[J]. Fuel, 2018,231:94-100.

    21. [21]

      SUN Zhe. Migration law of arsenic, lead, cadmium and chromium in coal-fired power stations[D]. Beijing: North China Electric Power University, 2015.

    22. [22]

      VEJAHATI F, XU Z H, GUPTA R. Trace elements in coal: Associations with coal and minerals and their behavior during coal utilization-A review[J]. Fuel, 2009,89(4):904-911.

    23. [23]

      ZHAO Y C, ZHANG J Y, ZHENG C G. Release and removal using sorbents of chromium from a high-Cr lignite in Shenbei coalfield, China[J]. Fuel, 2013,109:86-93.

    24. [24]

      MIHONE K M, HANA F, SANDA R, LIDIJA Ć. Assessment of metal risks from different depths of jarosite tailing waste of Trepça Zinc Industry, Kosovo based on BCR procedure[J]. J Geochem Explor, 2015,148:161-168.

    25. [25]

      SHI Yan-hong. Research on Heavy Metal Emissions and Control of Coal-fired Power Plants[D]. Beijing: North China Electric Power University, 2016.

    26. [26]

      LIU Hui-min, WANG Chun-bo, ZHANG Yue, SUN Zhe, SHAO Huan. Effects of temperature and occurrence form on the migration and release of arsenic during coal combustion[J]. CIESC J, 2015,66(11):4643-4651.

    27. [27]

      GB 14848—2017, Groundwater Environmental Quality Standard[S].

    28. [28]

      GUO Sheng-li. Study on the characteristics of coal-burning heavy metal migration and transformation and its pollution control[D]. Chongqing: Chongqing University, 2014.

    29. [29]

      LIU Yuan. Study on the distribution of arsenic in coal combustion products and the arsenic precipitation law during coal combustion[D]. Liaoning: Liaoning Technical University, 2013.

  • 加载中
    1. [1]

      Xiangli Wang Yuanfu Deng . Teaching Design of Elemental Chemistry from the Perspective of “Curriculum Ideology and Politics”: Taking Arsenic as an Example. University Chemistry, 2024, 39(2): 270-279. doi: 10.3866/PKU.DXHX202308092

    2. [2]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

    3. [3]

      Xiaoyan Wang Chao Wang Dongmei Dai Yanling Geng Hongtao Gao . Design of Ideological and Political Education for the Experiment on Calcium Content Determination in Calcium Supplements. University Chemistry, 2024, 39(2): 162-167. doi: 10.3866/PKU.DXHX202307074

    4. [4]

      Jiangjuan Shao Xuan Li Jingdan Weng Xiaolei Chen Fei Xu Yulu Ma Nianguang Li Shizhong Zheng . Improvement in the Experimental Teaching Design of Physical and Chemical Identification and Quantification of Mineral Drugs. University Chemistry, 2024, 39(10): 137-142. doi: 10.3866/PKU.DXHX202312079

    5. [5]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    6. [6]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    7. [7]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    8. [8]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    9. [9]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

    10. [10]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    11. [11]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    12. [12]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    13. [13]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

    14. [14]

      Liping Wang Huanfeng Wang Yuling Li Lingchuan Li Xiaojing Li Huifeng Chen Bowen Ji Linna Wang . Exploring the Full Process of a Research-Based Teaching Model through the Deep Integration of Theory and Practice: A Case Study of the Self-Designed Scheme for “Determination of Total Acid Content in White Vinegar”. University Chemistry, 2025, 40(5): 244-251. doi: 10.12461/PKU.DXHX202406035

Metrics
  • PDF Downloads(2)
  • Abstract views(634)
  • HTML views(97)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return