Citation: ZHANG Xi, WU Zhi-wei, ZHU Hua-qing, LI Shi-ying, QIN Zhang-feng, FAN Wei-bin, WANG Jian-guo. Controllable synthesis of a 3D flower-like CeTiOx composite oxide exposing CeO2{100} plane and it supported Au catalyst for CO oxidation[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(6): 697-706. shu

Controllable synthesis of a 3D flower-like CeTiOx composite oxide exposing CeO2{100} plane and it supported Au catalyst for CO oxidation

  • Corresponding author: WU Zhi-wei, wuzhiwei@sxicc.ac.cn QIN Zhang-feng, qzhf@sxicc.ac.cn
  • Received Date: 24 February 2017
    Revised Date: 26 April 2017

    Fund Project: Shanxi Province Science and Technology Research Project MQ2014-10the National Natural Science Foundation of China 21403268Shanxi Province Science and Technology Research Project MQ2014-11Strategic Priority Research Program of the Chinese Academy of Sciences XDA07060300

Figures(9)

  • In this work, a flower-like CeTiOx composite oxide, predominantly exposing CeO2{100} plane, was synthesized by a simple hydrothermal method. The SEM and XRD results revealed the growth mechanism of CeTiOx composite oxide can be divided into two stages, including the rapid growth of amorphous and the following crystallization. The ratio of Ce/Ti, KOH concentration, crystallization time and calcination temperature are the key factors for the synthesis of the flower-like CeTiOx composite oxide. Au catalyst supported on this composite oxide exhibited superior activity for CO oxidation at room temperature. The TEM and H2-TPR results suggested that the exposed CeO2{100} plane and the strong interaction between Au and CeTiOx composite oxide are responsible for the high activity.
  • 加载中
    1. [1]

      SUN Y A, SHEN Y N, JIA M L. Evolution of gold species in an Au/CeO2 catalyst and its impact on activity for CO oxidation[J]. Chem Res Chin Univ, 2010,26(3):453-459.

    2. [2]

      HARUTA M, YAMADA N, KOBAYASHI T. Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide[J]. J Catal, 1989,115(2):301-309. doi: 10.1016/0021-9517(89)90034-1

    3. [3]

      HARUTA M, TSUBOTA S, KOBAYASHI T. Low-temperature oxidation of CO over gold supported on TiO2, α-Fe2O3, and Co3O4[J]. J Catal, 1993,144(1):175-192. doi: 10.1006/jcat.1993.1322

    4. [4]

      PANDIAN L, LAURENT D, VINCENT R. Total oxidation of propene over Au/CeO2-Al2O3 catalysts: Influence of the CeO2 loading and the activation treatment[J]. Appl Catal B: Environ, 2010,96(1/2):117-125.

    5. [5]

      MARIA P C, ALESSANDRO L, ANNA M V. Metal-support and preparation influence on the structural and electronic properties of gold catalysts[J]. Appl Catal A: Gen, 2006,302(2):309-316. doi: 10.1016/j.apcata.2006.02.005

    6. [6]

      LI Q, ZHANG Y H, CHEN G X. Ultra-low-gold loading Au/CeO2 catalysts for ambient temperature CO oxidation: Effect of preparation conditions on surface composition and activity[J]. J Catal, 2010,273(2):167-176. doi: 10.1016/j.jcat.2010.05.008

    7. [7]

      LI S H, ZHU H Q, QIN Z F. Morphologic effects of nano CeO2-TiO2 on the performance of Au/CeO2-TiO2 catalysts in low-temperature CO oxidation[J]. Appl Catal B: Environ, 2014,144:498-506. doi: 10.1016/j.apcatb.2013.07.049

    8. [8]

      QIAN K, HUANG W X, JIANG Z Q. Anchoring highly active gold nanoparticles on SiO2 by CoOx additive[J]. J Catal, 2007,248(1):137-141. doi: 10.1016/j.jcat.2007.02.010

    9. [9]

      WANG Z H, FU H F, TIAN Z W. Strong metal-support interaction in novel core-shell Au-CeO2 nanostructures induced by different pretreatment atmospheres and its influence on CO oxidation[J]. Nanoscale, 2016,8(11):5865-5872. doi: 10.1039/C5NR06929G

    10. [10]

      ALESSANDRO L, LEONARDA F L, GABRIELLA D C. Structure and the metal support interaction of the Au/Mn oxide catalysts[J]. Chem Mater, 2010,22(13):3952-3960. doi: 10.1021/cm100697b

    11. [11]

      LIU X J, LIU J F, CHANG Z. Crystal plane effect of Fe2O3 with various morphologies on CO catalytic oxidation[J]. Catal Commun, 2011,12(6):530-534. doi: 10.1016/j.catcom.2010.11.016

    12. [12]

      LIN S J, SUA G J, ZHENG M H. Synthesis of flower-like Co3O4-CeO2 composite oxide and its application to catalytic degradation of 1, 2, 4-trichlorobenzene[J]. Appl Catal B: Environ, 2012,123/124:440-447. doi: 10.1016/j.apcatb.2012.05.011

    13. [13]

      ZHENG Y H, CHENG Y, WANG Y S. Quasicubic alpha-Fe2O3 nanoparticles with excellent catalytic performance[J]. J Phys Chem B, 2006,110(7):3093-3097. doi: 10.1021/jp056617q

    14. [14]

      XIE X W, LI Y, LIU Z Q. Low-temperature oxidation of CO catalysed by Co3O4 nanorods[J]. Nature, 2009,458(7239):746-749. doi: 10.1038/nature07877

    15. [15]

      LIU L J, JIANG Y Q, ZHAO H L. Engineering coexposed {001} and {101} facets in oxygen-deficient TiO2 nanocrystals for enhanced CO2 photoreduction under visible light[J]. ACS Catal, 2016,6(2):1097-1108.

    16. [16]

      WANG G H, LI W C, JIA K M. Shape and size controlled alpha-Fe2O3 nanoparticles as supports for gold-catalysts: Synthesis and influence of support shape and size on catalytic performance[J]. Appl Catal A: Gen, 2009,364(1/2):42-47.

    17. [17]

      ZIOLKOWSKI J, BARBAUX Y. Identification of sites active in oxidation of butene to butadiene and CO2 on CO3O4 in terms of the crystallochemical model of solid surface[J]. J Mol Catal, 1991,67(2):199-215. doi: 10.1016/0304-5102(91)85047-6

    18. [18]

      TTHX T S, FRANCESCO C, ZHANG X Q. Structure-activity map of ceria nanoparticles, nanocubes, and mesoporous architectures[J]. Chem Mater, 2016,28(20):7287-7295. doi: 10.1021/acs.chemmater.6b02536

    19. [19]

      HAUNG W X. Oxide nanocrystal model catalysts[J]. Acc Chem Res, 2016,49(3):520-527. doi: 10.1021/acs.accounts.5b00537

    20. [20]

      TA N, LIU J Y, SANTHOSH C. Stabilized gold nanoparticles on ceria nanorods by strong interfacial anchoring[J]. J Am Chem Soc, 2012,134(51):20585-20588. doi: 10.1021/ja310341j

    21. [21]

      TIZIANO M, MICHELE M, MATTEO M. Fundamentals and catalytic applications of CeO2-based materials[J]. Chem Rev, 2016,116(10):5987-6041. doi: 10.1021/acs.chemrev.5b00603

    22. [22]

      HU Z, LIU X F, MENG D M. Effect of ceria crystal plane on the physicochemical and catalytic properties of Pd/ceria for CO and propane oxidation[J]. Acs Catal, 2016,6(4):2265-2279. doi: 10.1021/acscatal.5b02617

    23. [23]

      SUN C W, LI H, CHEN L Q. Study of flowerlike CeO2 microspheres used as catalyst supports for CO oxidation reaction[J]. J Phys Chem Solids, 2007,68(9):1785-1790. doi: 10.1016/j.jpcs.2007.05.005

    24. [24]

      LIU W, FENG L U, ZHANG C. A facile hydrothermal synthesis of 3D flowerlike CeO2 via a cerium oxalate precursor[J]. J Mater Chem A, 2013,1(23):6942-6948. doi: 10.1039/c3ta10487g

    25. [25]

      ZHOU K B, WANG X, SUN X M. Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes[J]. J Catal, 2005,229(1):206-212. doi: 10.1016/j.jcat.2004.11.004

    26. [26]

      MAI H X, SUN L D, ZHANG Y W. Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes[J]. J Phys Chem B, 2005,109(51):24380-24385. doi: 10.1021/jp055584b

    27. [27]

      SUN C W, SUN J, XIAO G L. Mesoscale organization of nearly monodisperse flowerlike ceria microspheres[J]. J Phys Chem B, 2007,110(27):13445-13452.  

    28. [28]

      PUTLA S, BAITHY M, PADIGAPATI S R. Nano-Au/CeO2 catalysts for CO oxidation: Influence of dopants (Fe, La and Zr) on the physicochemical properties and catalytic activity[J]. Appl Catal B: Environ, 2014,144:900-908. doi: 10.1016/j.apcatb.2013.08.035

    29. [29]

      PENN R L. Kinetics of oriented aggregation[J]. J Phys Chem B, 2004,108(34):12707-12712. doi: 10.1021/jp036490+

    30. [30]

      CHEN Y, WANG Y S, ZHEGN Y H. Two-step self-assembly of nanodisks into plate-built cylinders through oriented aggregation[J]. J Phys Chem B, 2005,109(23):11548-11551. doi: 10.1021/jp050641m

    31. [31]

      HUANG X S, SUN H, WANG L C. Morphology effects of nanoscale ceria on the activity of Au/CeO2 catalysts for low-temperature CO oxidation[J]. Appl Catal B: Environ, 2009,90(1/2):224-232.  

    32. [32]

      ZHONG L S, HU J S, CAO A M. 3D flowerlike ceria micro/nanocomposite structure and its application for water treatment and CO removal[J]. Chem Mater, 2007,19(7):1648-1655. doi: 10.1021/cm062471b

    33. [33]

      QI J, CHEN J, LI G D. Facile synthesis of core-shell Au@CeO2 nanocomposites with remarkably enhanced catalytic activity for CO oxidation[J]. Energy Environ Sci, 2012,5(10)8937. doi: 10.1039/c2ee22600f

  • 加载中
    1. [1]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    2. [2]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    3. [3]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    4. [4]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    5. [5]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    6. [6]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    7. [7]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    8. [8]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    9. [9]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    10. [10]

      Shijie RenMingze GaoRui-Ting GaoLei Wang . Bimetallic Oxyhydroxide Cocatalyst Derived from CoFe MOF for Stable Solar Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(7): 2307040-0. doi: 10.3866/PKU.WHXB202307040

    11. [11]

      Qing LiGuangxun ZhangYuxia XuYangyang SunHuan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045

    12. [12]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    13. [13]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    14. [14]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    15. [15]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    16. [16]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    17. [17]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    18. [18]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    19. [19]

      Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378

    20. [20]

      Xiaofang LiZhigang Wang . 调节金助催化剂的dz2占据轨道增强光催化合成H2O2. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-0. doi: 10.1016/j.actphy.2025.100080

Metrics
  • PDF Downloads(3)
  • Abstract views(1814)
  • HTML views(379)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return