Citation: XU Hao, ZHANG Cheng, YUAN Chang-le, YU Sheng-hui, LI Quan, FANG Qing-yan, CHEN Gang. Study on arsenic adsorption characteristics by mineral elements in simulated flue gas atmosphere[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(7): 876-883. shu

Study on arsenic adsorption characteristics by mineral elements in simulated flue gas atmosphere

  • Corresponding author: ZHANG Cheng, chengzhang@mail.hust.edu.cn
  • Received Date: 27 March 2019
    Revised Date: 14 May 2019

    Fund Project: The project was supported by the National Key Research and Development Program of China (2018YFB0605105)the National Key Research and Development Program of China 2018YFB0605105

Figures(9)

  • The adsorption characteristics of As2O3(g) by CaO, Fe2O3, MgO, Al2O3, K2SO4 and Ca/Fe mixed adsorbents under the simulated flue gas atmosphere were studied by using a gas phase arsenic adsorption reaction experimental device at temperatures between 300 and 900℃. The results indicate that the adsorption ability of CaO is the strongest among the five single element adsorbents, while K2SO4 is the weakest. With the increase of temperature, the adsorption amount of CaO increases first, decreases slightly at 700℃, and then increases, while the adsorption amount of Fe2O3 increases first, and then decreases. However, the adsorption amount of MgO, Al2O3 and K2SO4 increases all the way. Compared with the calculated values of adsorption amounts of Ca/Fe mixed adsorbents in three proportions, the experimental values increase by 92% at least. The adsorption effect is the best when the ratio of CaO to Fe2O3 is 3:1. And the change of surface structure caused by sintering reaction after mixing is an important reason for the improvement of the adsorption effect.
  • 加载中
    1. [1]

      WANG C, LIU H, ZHANG Y, ZOU C, ANTHONY E J. Review of arsenic behavior during coal combustion:Volatilization, transformation, emission and removal technologiesJ][J]. Prog Energy Combust, 2018,68:1-28. doi: 10.1016/j.pecs.2018.04.001

    2. [2]

      KANG Yu. Environmental biogeochemistry of arsenic in coal mining area[D]. Hefei: University of Science and Technology of China, 2014.

    3. [3]

      WANG C, ZHANG Y, SHI Y, LIU H, ZOU C, WU H, KANG X. Research on collaborative control of Hg, As, Pb and Cr by electrostatic-fabric-integrated precipitator and wet flue gas desulphurization in coal-fired power plants[J]. Fuel, 2017,210:527-534. doi: 10.1016/j.fuel.2017.08.108

    4. [4]

      TIAN H Z, ZHU C Y, GAO J J, CHENG K, HAO J M, WANG K, HUA S B, WANG Y, ZHOU J R. Quantitative assessment of atmospheric emissions of toxic heavy metals from anthropogenic sources in China:Historical trend, spatial distribution, uncertainties, and control policies[J]. Atmos Chem Phys, 2015,15(17):10127-10147. doi: 10.5194/acp-15-10127-2015

    5. [5]

      LI S, GUO S, HUANG X, HUANG T, BIBI I, MUHAMMAD F, XU G, ZHAO Z, YU L, YAN Y, JIAO B, NIAZI N K, LI D. Research on characteristics of heavy metals (As, Cd, Zn) in coal from southwest China and prevention method by using modified calcium-based materials[J]. Fuel, 2016,186:714-725. doi: 10.1016/j.fuel.2016.09.008

    6. [6]

      LI J, PENG Y, CHANG H, LI X, CRITTENDEN J C, HAO J. Chemical poison and regeneration of SCR catalysts for NOx removal from stationary sources[J]. Front Environ Sci Eng, 2016,10(3):413-427. doi: 10.1007/s11783-016-0832-3

    7. [7]

      PRATIM B, WU C Y. Control of toxic metal emissions from combustors using sorbents:A review[J]. J Air Waste Manage, 1998,48(2):113-127. doi: 10.1080/10473289.1998.10463657

    8. [8]

      WANG J, ZHANG Y, LIU Z, NORRIS P, ROMERO C E, XU H, PAN W P. Effect of coordinated air pollution control devices in coal-fired power plants on arsenic emissions[J]. Energy Fuels, 2017,31(7):7309-7316. doi: 10.1021/acs.energyfuels.7b00711

    9. [9]

      ZHAO Y C, ZHANG J Y, HUANG W C, WANG Z H, LI Y, SONG D Y, ZH AO, F H, ZHENG C G. Arsenic emission during combustion of high arsenic coals from southwestern Guizhou, China[J]. Energy Convers Manage, 2008,49(4):615-624. doi: 10.1016/j.enconman.2007.07.044

    10. [10]

      YANG Y, HU H, XIE K, HUANG Y, LIU H, LI X, YAO H, NARUSE I. Insight of arsenic transformation behavior during high-arsenic coal combustion[J]. Proc Combust Inst, 2019,37(4):4443-4450. doi: 10.1016/j.proci.2018.07.064

    11. [11]

      ZHANG K, ZHANG D, ZHANG K, CAO Y. Capture of gas-phase arsenic by ferrospheres separated from fly ashes[J]. Energy Fuels, 2016,30(10):8746-8752. doi: 10.1021/acs.energyfuels.6b01637

    12. [12]

      ZHANG Yue, WANG Chun-bo, LIU Hui-min, SUN Zhe, LI Wen-han, ZHANG Yong-sheng, PAN Wei-ping. Removal of gas-phase As2O3 in dry process by metal oxide adsorbents[J]. J Fuel Chem Technol, 2015,43(4):476-482. doi: 10.3969/j.issn.0253-2409.2015.04.016 

    13. [13]

      MAHULI S, AGNIHOTRI R, CHAUK S, GHOSHDASTIDAR A, FAN L S. Mechanism of arsenic sorption by hydrated lime[J]. Environ Sci Technol, 1997,31(11):3226-3231. doi: 10.1021/es9702125

    14. [14]

      STERLING R O, HELBLE J J. Reaction of arsenic vapor species with fly ash compounds:Kinetics and speciation of the reaction with calcium silicates[J]. Chemosphere, 2003,51(10):1111-1119. doi: 10.1016/S0045-6535(02)00722-1

    15. [15]

      ZHANG Yue, LI Wen-han, WANG Chun-bo, LIU Hui-min, ZHANG Yong-sheng, PAN Wei-ping. Experimental study on As2O3 capture from gas phase using ultrasound-assisted prepared Fe2O3/γ-Al2O3 sorbent[J]. J Fuel Chem Technol, 2015,43(9):1134-1141. doi: 10.3969/j.issn.0253-2409.2015.09.017 

    16. [16]

      HUANG Y, YANG Y, HU H, XU M, LIU H, LI X, WANG X, YAO H. A deep insight into arsenic adsorption over γ-Al2O3 in the presence of SO2/NO[J]. Proc Combust Inst, 2019,37(4):4443-4450. doi: 10.1016/j.proci.2018.07.064

    17. [17]

      CHEN D, HU H, XU Z, LIU H, CAO J, SHEN J, YAO H. Findings of proper temperatures for arsenic capture by CaO in the simulated flue gas with and without SO2[J]. Chem Eng J, 2015,267:201-206. doi: 10.1016/j.cej.2015.01.035

    18. [18]

      ZHANG Jun-ying, REN De-yi, ZHONG Qin, XU Fu-ming, ZHANG Yan-guo. Restraining of arsenic volatility using lime in coal combustion[J]. J Fuel Chem Technol, 2000,28(3):198-200. doi: 10.3969/j.issn.0253-2409.2000.03.002

    19. [19]

      JADHAV R A, FAN L S. Capture of gas-phase arsenic oxide by Lime:Kinetic and mechanistic studies[J]. Environ Sci Technol, 2001,35(4):794-799. doi: 10.1021/es001405m

    20. [20]

      LI Y, TONG H, ZHUO Y, LI Y, XU X. Simultaneous removal of SO2 and trace As2O3 from flue gas:Mechanism, kinetics study, and effect of main gases on arsenic capture[J]. Environ Sci Technol, 2007,41(8):2894-2900. doi: 10.1021/es0618494

    21. [21]

      ZHANG Y, LIU J. Density functional theory study of arsenic adsorption on the Fe2O3 (001) Surface[J]. Energy Fuels, 2019,33(2):1414-1421. doi: 10.1021/acs.energyfuels.8b04155

    22. [22]

      MCLENNAN A R, BRYANT G W, STANMORE B R, WALL T F. Ash formation mechanisms during pf combustion in reducing conditions[J]. Energy Fuels, 2000,14(1):150-159.  

    23. [23]

      ZHOU C, LIU G, XU Z, SUN H, LAM P K S. Effect of ash composition on the partitioning of arsenic during fluidized bed combustion[J]. Fuel, 2017,204:91-97. doi: 10.1016/j.fuel.2017.05.048

    24. [24]

      HU H, CHEN D, LIU H, YANG Y, CAI H, SHEN J, YAO H. Adsorption and reaction mechanism of arsenic vapors over γ-Al2O3 in the simulated flue gas containing acid gases[J]. Chemosphere, 2017,180:186-191. doi: 10.1016/j.chemosphere.2017.03.114

    25. [25]

      CONTRERAS M L, AROSTEGUI J M, ARMESTO L. Arsenic interactions during co-combustion processes based on thermodynamic equilibrium calculations[J]. Fuel, 2009,88(3):539-546. doi: 10.1016/j.fuel.2008.09.028

    26. [26]

      SEAMES W S, WENDT J O L. Regimes of association of arsenic and selenium during pulverized coal combustion[J]. Proc Combust Inst, 2007,31(2):2839-2846. doi: 10.1016/j.proci.2006.08.066

    27. [27]

      LIU G, LIAO Y, WU Y, MA X. Synthesis gas production from microalgae gasification in the presence of Fe2O3 oxygen carrier and CaO additive[J]. Appl Energy, 2018,212:955-965. doi: 10.1016/j.apenergy.2017.12.110

    28. [28]

      ZHANG Guo-zhu. Study on the crystal composition and physical and chemical properties of SFCA[D]. Tangshan: North China University of Science and Technology, 2017.

    29. [29]

      FAN Xiao-hui, Meng Jun, CHEN Xu-lin, ZHUANG Jian-ming, LI Ying, YUAN Li-shun. Influence factors of calcium ferrite formation in iron ore sintering[J]. J Cent South Univ, 2008,39(6):1125-1131.  

    30. [30]

      MENG Fan-jian. Study on the influencing factors of forming Silico-Ferrite of calcium and aluminum and the behavior of primary slag formation[D]. Anshan: University of Science and Technology Liaoning, 2018.

    31. [31]

      LI Yan-xu, LI Chun-hu, GUO Han-xian, ZHONG Bing. Preparation of iron calcium oxide high temperature gas desulfurizer[J]. J Fuel Chem Technol, 1999,27(6):49-54.  

    32. [32]

      YANG Li-zhai, QI Hai-ying, YOU Chang-fu, XU Xu-chang. Activation of Fe2O3 to desulfurization with CaO AT medium temperature[J]. J Chem Ind Eng, 2003,54(1):86-90. doi: 10.3321/j.issn:0438-1157.2003.01.019

  • 加载中
    1. [1]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

    2. [2]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    3. [3]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    4. [4]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    5. [5]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    6. [6]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    7. [7]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    8. [8]

      Xueqi Yang Juntao Zhao Jiawei Ye Desen Zhou Tingmin Di Jun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-. doi: 10.1016/j.actphy.2025.100074

    9. [9]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

    10. [10]

      Xiaofang Li Zhigang Wang . Modulating dz2-orbital occupancy of Au cocatalysts for enhanced photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-. doi: 10.1016/j.actphy.2025.100080

    11. [11]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    12. [12]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    13. [13]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    14. [14]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    15. [15]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    16. [16]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    17. [17]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    18. [18]

      Yu Wang Haiyang Shi Zihan Chen Feng Chen Ping Wang Xuefei Wang . 具有富电子Ptδ-壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-. doi: 10.1016/j.actphy.2025.100081

    19. [19]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    20. [20]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

Metrics
  • PDF Downloads(5)
  • Abstract views(585)
  • HTML views(97)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return