Citation: Yuan Zhendong, Liu Danqing. Graphene: From Theoretical Model to Objective Reality[J]. Chemistry, ;2019, 82(10): 954-959. shu

Graphene: From Theoretical Model to Objective Reality

  • Corresponding author: Yuan Zhendong, yuanzhendong64@126.com
  • Received Date: 18 April 2019
    Accepted Date: 18 July 2019

Figures(3)

  • The appearance of graphene in 2004 overturned the traditional theory and created a carbon paradigm from zero dimension to three dimensions. Through the research on the history of graphene discovery, it is known that in the 1840s, scientists conducted a lot of research on graphite oxide, which promoted the discovery of graphene. In the 1950s, theoretical physicists made theoretical assumptions about the existence of graphene. To the 1980s, scientists explored the allotropes of carbon and made unremitting efforts to prepare single-layer graphene. After many failures, the researchers finally succeeded in preparing graphene in 2004 and began to study its properties. The discovery of graphene has brought about a shift in scientific understanding and a breakthrough in technology.
  • 加载中
    1. [1]

      P D Michael, J R Samuel, C S Graham et al. ACS Appl. Energy Mater., 2018, 1(2):707~714. 

    2. [2]

      J Yu, L Kong, H Wang et al. ACS Appl. Energy Mater., 2019, 2(2):1192~1198. 

    3. [3]

      W X Zhang, Z P Liu, Ch J Xu et al. Res. Chem. Intermediat., 2018, 44(9):5075~5089. 

    4. [4]

      K F Chen, D F Xue. Mater. Res. Bull., 2017, 96:281~285. 

    5. [5]

       

    6. [6]

      D R Dreyer, R S Ruoff, C W Bielawski. Angew. Chem. Int. Ed., 2010, 49(49):9336~9344. 

    7. [7]

      C Schafhaeutl. J. Prakt. Chem., 1840, 21(1):129~157. 

    8. [8]

      C Schafhaeutl. Philos. Mag. Ser., 1840, 16(103):297~304.

    9. [9]

      B C Brodie. Quart. J. Chem. Soc. London, 1860, 12(1):261~268. 

    10. [10]

      B C Brodie. Philosoph. Transact. Roy. Soc. London, 1859, 149:249~259. 

    11. [11]

      G Ruess, F Vogt. Monatsh. Chem., 1948, 78(3~4):222~242. 

    12. [12]

      H P Boehm, A Clauss, G O Fischer et al. Zeit. Naturforsch. B, 1962, 17(3):150. 

    13. [13]

    14. [14]

      P R Wallace. Phys. Rev., 1947, 71(9):622~634. 

    15. [15]

    16. [16]

      J W McClure. Phys. Rev., 1956, 104(3):666~671. 

    17. [17]

      G W Semenoff. Phys. Rev. Lett., 1984, 53(26):2449~2453. 

    18. [18]

      D P DiVincenzo, E J Mele. Phys. Rev. B, 1984, 29:1685~1694. 

    19. [19]

      A E Morgan, G A Somorjai. Surf. Sci., 1968, 12(3):405~425. 

    20. [20]

      J W May. Surf. Sci., 1969, 17(1):267~270. 

    21. [21]

      J M Blakely, J S Kim, H C Poteer. J. Appl. Phys., 1970, 41(6):2693~2697. 

    22. [22]

      M Eizenberg, J M Blakely. J. Chem. Phys., 1979, 71(8):3467~3477. 

    23. [23]

      T A Land, T Michely, R J Behm. Surf. Sci., 1992, 264(3):261~270. 

    24. [24]

      A J Bommel, J E Crombeen. Surf. Sci., 1975, 48(2):463~472. 

    25. [25]

      H P Boehm, R Setton, E Stumpp. Carbon, 1986, 24(2):241~245. 

    26. [26]

      A K Geim, K S Novoselov. Nat. Mater., 2007, 6(3):183~191. 

    27. [27]

      N D Mermin, H Wagner. Phys. Rev. Lett., 1966, 17(17):1133~1136.

    28. [28]

      N D Mermin. Phys. Rev. Lett., 1968, 176(1):250~254.

    29. [29]

      X Lu, M Yu, H Huang et al. Nanotechnology, 1999, 10(3):269~272. 

    30. [30]

    31. [31]

      Y B Zhang, J P Small, W V Pontius et al. Appl. Phys. Lett., 2005, 86(7):1~3.

    32. [32]

       

    33. [33]

      K S Novoselov, Geim A K, Morozov S V et al. Science, 2004, 306:666~669. 

    34. [34]

       

    35. [35]

      A K Geim. Angew. Chem. Int. Ed., 2011, 50(31):6966~6985. 

    36. [36]

       

    37. [37]

    38. [38]

      K S Novoselov, A K Geim, S V Morozov et al. Nature, 2005, 438:197~200. 

    39. [39]

      Y B Zhang, Y W Tan, H L Stormer et al. Nature, 2005, 438:201~204. 

    40. [40]

      K S Novoselov, D Jiang, F Schedin et al. PNAS, 2005, 102:10451~10453. 

    41. [41]

      I I Barbolina, K S Novoselov, S V Morozov et al. Appl. Phys. Lett., 2006, 88:013901. 

  • 加载中
    1. [1]

      Anbang DuYuanfan WangZhihong WeiDongxu ZhangLi LiWeiqing YangQianlu SunLili ZhaoWeigao XuYuxi Tian . Photothermal Microscopy of Graphene Flakes with Different Thicknesses. Acta Physico-Chimica Sinica, 2024, 40(5): 2304027-0. doi: 10.3866/PKU.WHXB202304027

    2. [2]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    3. [3]

      Xueting CaoShuangshuang ChaMing Gong . Interfacial Electrical Double Layer in Electrocatalytic Reactions: Fundamentals, Characterizations and Applications. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-0. doi: 10.1016/j.actphy.2024.100041

    4. [4]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    5. [5]

      Tao XuWei SunTianci KongJie ZhouYitai Qian . Stable Graphite Interface for Potassium Ion Battery Achieving Ultralong Cycling Performance. Acta Physico-Chimica Sinica, 2024, 40(2): 2303021-0. doi: 10.3866/PKU.WHXB202303021

    6. [6]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    7. [7]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    8. [8]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    9. [9]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    10. [10]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    11. [11]

      Tianqi BaiKun HuangFachen LiuRuochen ShiWencai RenSongfeng PeiPeng GaoZhongfan Liu . Nanoscale Mechanism of Microstructure-Dependent Thermal Diffusivity in Thick Graphene Sheets. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-0. doi: 10.3866/PKU.WHXB202404024

    12. [12]

      Jiahao LuXin MingYingjun LiuYuanyuan HaoPeijuan ZhangSonghan ShiYi MaoYue YuShengying CaiZhen XuChao Gao . High-Precision and Reliable Thermal Conductivity Measurement for Graphene Films Based on an Improved Steady-State Electric Heating Method. Acta Physico-Chimica Sinica, 2025, 41(5): 100045-0. doi: 10.1016/j.actphy.2025.100045

    13. [13]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    14. [14]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    15. [15]

      Yue ZhangBao LiLixin Wu . GO-Assisted Supramolecular Framework Membrane for High-Performance Separation of Nanosized Oil-in-Water Emulsions. Acta Physico-Chimica Sinica, 2024, 40(5): 2305038-0. doi: 10.3866/PKU.WHXB202305038

    16. [16]

      Jiamin Li Wenyue Zhong Kin Shing Chan . “烯”君入瓮又入学——据元素周期表与酸碱理论谈烯烃教学. University Chemistry, 2025, 40(6): 177-182. doi: 10.12461/PKU.DXHX202408040

    17. [17]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    18. [18]

      Lisha LEIWei YONGYiting CHENGYibo WANGWenchao HUANGJunhuan ZHAOZhongjie ZHAIYangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202

    19. [19]

      Yuhao Chen Zhuo Cheng Qijun Hu Jian Pei . 酸碱理论的发展历程. University Chemistry, 2025, 40(8): 368-375. doi: 10.12461/PKU.DXHX202412001

    20. [20]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

Metrics
  • PDF Downloads(0)
  • Abstract views(2289)
  • HTML views(380)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return