Citation: Liu Yuanlie, Wang Mei, Chen Lei, Li Dashan, Wang Wenjing, Zhan Rui, Shao Lidong. Progress in α-C(sp3)-H Arylation of Cyclic Compounds with Carbonyl Groups[J]. Chemistry, ;2020, 83(7): 641-651. shu

Progress in α-C(sp3)-H Arylation of Cyclic Compounds with Carbonyl Groups

Figures(13)

  • Cyclic compounds with carbonyl groups comprise of cyclic ketones, lactones, and lactams. The α-C(sp3)-H arylation of these cyclic compounds is an important type of C-H functionalization, exhibiting high efficiency in formation of C(sp3)-C(sp2) bonds, playing an important role in organic synthesis, and attracting majority of interests from organic and medicinal communities. Up to now, various α-C(sp3)-H arylations of these cyclic compounds have been reported. This article mainly reviews the research progress of such reactions in the past two decades.
  • 加载中
    1. [1]

      Ren J, Shi X, Li X N, et al. Org. Lett., 2016, 18(16):3948~3951. 

    2. [2]

      Zhu Y, Shao L D, Deng Z T, et al. J. Org. Chem., 2018, 83(17):10166~10174. 

    3. [3]

      Xu J, Shao L D, Li D S, et al. J. Am. Chem. Soc., 2014, 136(52):17962~17965. 

    4. [4]

      Godula K, Sames D. Science, 2006, 312(5770):67~72. 

    5. [5]

      He J, Wasa M, Chan K S L, et al. Chem. Rev., 2017, 117(13):8754~8786. 

    6. [6]

      Vargová D, Némethová L, Plevová K, et al. ACS Catal., 2019, 9(4):3104~3143. 

    7. [7]

      Murahashi T, Kurosawa H. J. Organomet. Chem., 1999, 574(1):142~147. 

    8. [8]

      Ciufolini M A, Qi H B, Browne M E. J. Org. Chem., 1988, 53(17):4149~4151. 

    9. [9]

      Muratake H, Natsume M. Tetrahed. Lett., 1997, 38(43):7581~7582. 

    10. [10]

      Palucki M, Buchwald S L. J. Am. Chem. Soc., 1997, 119(45):11108~11109. 

    11. [11]

      Svennebring A, Garg N, Nilsson P, et al. J. Org. Chem., 2005, 70(12):4720~4725. 

    12. [12]

      Storgaard M, Dörwald F Z, Peschke B, et al. J. Org. Chem., 2009, 74(14):5032~5040. 

    13. [13]

      Bélanger É, Cantin K, Messe O, et al. J. Am. Chem. Soc., 2007, 129(5):1034~1035. 

    14. [14]

      Solé D, Vallverdú L, Solans X, et al. J. Am. Chem. Soc., 2003, 125(6):1587~1594. 

    15. [15]

      Huang Z, Chen Z L, Lim L H, et al. Angew. Chem. Int. Ed., 2013, 52(22):5807~5812. 

    16. [16]

      hman J, Wolfe J P, Troustman M V, et al. J. Am. Chem. Soc., 1998, 120(8):1918~1919. 

    17. [17]

      Kawatsura M, Hartwig J F. J. Am. Chem. Soc., 1999, 121(7):1473~1478. 

    18. [18]

      Fox J M, Huang X H, Chieffi A, et al. J. Am. Chem. Soc., 2000, 122(7):1360~1370. 

    19. [19]

      Ehrentraut A, Zapf A, Beller M. Adv. Synth. Catal., 2002, 344(2):209~217.

    20. [20]

      Liao X, Weng Z, Hartwig J F. J. Am. Chem. Soc., 2008, 130(1):195~200. 

    21. [21]

      Viciu M S, Germaneau R F, Nolan S P. Org. Lett., 2002, 4(23):4053~4056. 

    22. [22]

      Hamada T, Chieffi A, Åhman J, et al. J. Am. Chem. Soc., 2002, 124(7):1261~1268. 

    23. [23]

      Liao X, Stanley L M, Hartwig J F. J. Am. Chem. Soc., 2011, 133(7):2088~2091. 

    24. [24]

      Han C, Kim E H, Colby D A. J. Am. Chem. Soc., 2011, 133(15):5802~5805. 

    25. [25]

      Jiao Z W, Beiger J J, Jin Y S, et al. J. Am. Chem. Soc., 2016, 138(49):15980~15986. 

    26. [26]

      Shaughnessy K H, Hamann B C, Hartwig J F. J. Org. Chem., 1998, 63(19):6546~6553. 

    27. [27]

      Durbin M J, Willis M C. Org. Lett., 2008, 10(7):1413~1415. 

    28. [28]

      Altman R A, Hyde A M, Huang X H, et al. J. Am. Chem. Soc., 2008, 130(29):9613~9620. 

    29. [29]

      Taylor A M, Altman R A, Buchwald S L. J. Am. Chem. Soc., 2009, 131(29):9900~9901. 

    30. [30]

      Jin Y S, Chen M, Ge S Z, et al. Org. Lett., 2017, 19(6):1390~1393. 

    31. [31]

      Xu Y, Su T S, Huang Z X, et al. Angew. Chem. Int. Ed., 2016, 55(7):2559~2563. 

    32. [32]

      Liu R R, Li B L, Lu J, et al. J. Am. Chem. Soc., 2016, 138(16):5198~5201. 

    33. [33]

      Zhu C D, Wang D Y, Sun W Y, et al. J. Am. Chem. Soc., 2017, 139(46):16486~16489. 

    34. [34]

      Huang X, Oh W R J J, Zhou J S. Angew. Chem. Int. Ed., 2018, 57(26):7673~7677. 

    35. [35]

      Wang M, Chen J, Chen Z J, et al. Angew. Chem. Int. Ed., 2018, 57(10):2707~2711. 

    36. [36]

      Liu X, Hartwig J F. Org. Lett., 2003, 5(11):1915~1918. 

    37. [37]

      Jiang L, Weist S, Jansat S. Org. Lett., 2009, 11(7):1543~1546. 

    38. [38]

      Fernández-Nieto F, Mas Roselló J, Lenoir S, et al. Org. Lett., 2015, 17(15):3838~3841. 

    39. [39]

      Hyde A M, Buchwald S L. Angew. Chem. Int. Ed., 2008, 47(1):177~180. 

    40. [40]

      Zhao Y H, Zhou Y Y, Liang L L, et al. Org. Lett., 2009, 11(3):555~558. 

    41. [41]

      Johnson T, Pultar F, Menke F, et al. Org. Lett., 2016, 18(24):6488~6491. 

    42. [42]

      Hou W Y, Wu Y K. Org. Lett., 2017, 19(5):1220~1223. 

    43. [43]

      Yang Y C, Lin Y C, Wu Y K. Org. Lett., 2019, 21(23):9286~9290. 

    44. [44]

      Semmelhack M F, Stauffer R D, Rogerson T D. Tetrahed. Lett., 1973, 14(45):4519~4522. 

    45. [45]

      Spielvogel D J, Buchwald S L. J. Am. Chem. Soc., 2002, 124(14):3500~3501. 

    46. [46]

      Chen G S, Kwong F Y, Chan H O, et al. Chem. Commun., 2006, (13):1413~1415. 

    47. [47]

      Ge S, Hartwig J F. J. Am. Chem. Soc., 2011, 133(41):16330~16333. 

    48. [48]

      Josep C, Jackson E P, Martin R. Angew. Chem. Int. Ed., 2015, 54(13):4075~4078. 

    49. [49]

      Ghosh A, Walker J A, Arkady A, et al. ACS Catal., 2016, 6(4):2673~2680. 

    50. [50]

      Harvey J S, Simonovich S P, Jamison C R, et al. J. Am. Chem. Soc., 2011, 133(35):13782~13785. 

    51. [51]

      Liu T, Feng J J, Chen C, et al. Org. Lett., 2019, 21(12):4505~4509. 

    52. [52]

      Baran P S, Richter J M. J. Am. Chem. Soc., 2004, 126(24):7450~7451. 

    53. [53]

      Baran P S, Richter J M. J. Am. Chem. Soc., 2005, 127(44):15394~15396. 

    54. [54]

      Baran P S, Maimone T J, Richter J M. Nature, 2007, 446(7134):404~408. 

    55. [55]

      Wu H R, Huang H Y, Ren C L, et al. Chem. Eur. J., 2015, 21(47):16744~16748. 

    56. [56]

      Guo J, Dong S X, Zhang Y L, et al. Angew. Chem. Int. Ed., 2013, 52(39):10245~10249. 

    57. [57]

      Ueda N, Tokuyama T, Sakan T. Bull. Chem. Soc. Jpn., 1966, 39(9):2012~2014. 

    58. [58]

      Stewart J D, Fields S C, Kochhar K S, et al. J. Org. Chem., 1987, 52(10):2110~2113. 

    59. [59]

      Picazo E, Anthony S M, Giroud M, et al. J. Am. Chem. Soc., 2018, 140(24):7605~7610. 

    60. [60]

      Semmelhack M F, Bargar T M. J. Org. Chem., 1977, 42(8):1481~1482. 

    61. [61]

      Liang K, Li N, Zhang Y, et al. Chem. Sci., 2019, 10(10):3049~3053. 

    62. [62]

      Shirakawa S, Koga K, Takuda T, et al. Angew. Chem. Int. Ed., 2014, 53(24):6220~6223. 

    63. [63]

      Sattar M, Rathore V, Prasad C D, et al. Chem. Asian J., 2017, 12(7):734~743. 

    64. [64]

      Rao X F, Li N K, Bai H, et al. Angew. Chem. Int. Ed., 2018, 57(38):12328~12332. 

  • 加载中
    1. [1]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

    2. [2]

      Haoran ShiJiaxin WangYuqin ZhuHongyang LiGuodong JuLanlan ZhangChao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333

    3. [3]

      Yujia ShiYan QiaoPengfei XieMiaomiao TianXingwei LiJunbiao ChangBingxian Liu . Rhodium-catalyzed enantioselective in situ C(sp3)−H heteroarylation by a desymmetrization approach. Chinese Chemical Letters, 2024, 35(10): 109544-. doi: 10.1016/j.cclet.2024.109544

    4. [4]

      Yuemin ChenYunqi WuGuoao WangFeihu CuiHaitao TangYingming Pan . Electricity-driven enantioselective cross-dehydrogenative coupling of two C(sp3)-H bonds enabled by organocatalysis. Chinese Chemical Letters, 2024, 35(9): 109445-. doi: 10.1016/j.cclet.2023.109445

    5. [5]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    6. [6]

      Lei WanYizhou TongXi LuYao Fu . Cobalt-catalyzed reductive alkynylation to construct C(sp)-C(sp3) and C(sp)-C(sp2) bonds. Chinese Chemical Letters, 2024, 35(7): 109283-. doi: 10.1016/j.cclet.2023.109283

    7. [7]

      Jian HanLi-Li ZengQin-Yu FeiYan-Xiang GeRong-Hui HuangFen-Er Chen . Recent advances in remote C(sp3)–H functionalization via chelating group-assisted metal-catalyzed chain-walking reaction. Chinese Chemical Letters, 2024, 35(11): 109647-. doi: 10.1016/j.cclet.2024.109647

    8. [8]

      Jun JiangHui DaiTao Tu . Two vicinal C(sp3)-F bonds functionalization of perfluoroalkyl halides (PFAHs). Chinese Chemical Letters, 2025, 36(7): 111054-. doi: 10.1016/j.cclet.2025.111054

    9. [9]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    10. [10]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    11. [11]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

    12. [12]

      Wei-Bin LiXiao-Chao HuangPei LiuJie KongGuo-Ping Yang . Recent advances in directing group assisted transition metal catalyzed para-selective C-H functionalization. Chinese Chemical Letters, 2025, 36(6): 110543-. doi: 10.1016/j.cclet.2024.110543

    13. [13]

      Hanxue LIUShijie LIMeng RENXuling XUEHongke LIU . Design and antitumor properties of dehydroabietic acid functionalized cyclometalated iridium(Ⅲ) complex. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1483-1494. doi: 10.11862/CJIC.20250031

    14. [14]

      Shulei HuYu ZhangXiong XieLuhan LiKaixian ChenHong LiuJiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408

    15. [15]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    16. [16]

      Jialin HuangLiying FuZhanyong TangXiaoqiang MaXingda ZhaoDepeng Zhao . Cross-coupling of trifluoromethylarenes with alkynes C(sp)-H bonds and azoles C(sp2)-H bonds via photoredox/copper dual catalysis. Chinese Chemical Letters, 2025, 36(7): 110505-. doi: 10.1016/j.cclet.2024.110505

    17. [17]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    18. [18]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    19. [19]

      Qi WuChanghua WangYingying LiXintong Zhang . Enhanced photocatalytic synthesis of H2O2 by triplet electron transfer at g-C3N4@BN van der Waals heterojunction interface. Acta Physico-Chimica Sinica, 2025, 41(9): 100107-0. doi: 10.1016/j.actphy.2025.100107

    20. [20]

      Ke-Ai Zhou Lian Huang Xing-Ping Fu Li-Ling Zhang Yu-Ling Wang Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172

Metrics
  • PDF Downloads(18)
  • Abstract views(1175)
  • HTML views(308)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return