Citation: Wu Yu, Liu Jiacheng. Self-Assembled Dye-Sensitized Solar Cell Containing Dihydrothiazole Porphyrin Coordination Polymers[J]. Chemistry, ;2020, 83(8): 718-723. shu

Self-Assembled Dye-Sensitized Solar Cell Containing Dihydrothiazole Porphyrin Coordination Polymers

  • Received Date: 17 February 2020
    Accepted Date: 12 May 2020

Figures(5)

  • Two new dihydrothiazole zinc porphyrin(2+2 type and A4 type) based Mn (Ⅱ) ion coordination polymers (CPsx, x=1, 2) have been synthesized and well-characterized. Two as-synthesized coordination polymers and anchored porphyrins (ZnPA) self-assembled into dye-sensitized solar cells through axial coordination of metal-ligands. The assemby modes of the assemblies immobilized on TiO2 electrode surfaces were also verified by TEM. The photovoltaic performance tests showed that the self-assembly polymer has better photoelectric conversion efficiency than the monomer, especially the A4 type CPs2 based solar cell showed higher short circuit current and conversion efficiency. Their optical performance and EIS were also investigated to further understand the photoelectrochemical results.
  • 加载中
    1. [1]

      Yella A, Lee H W, Tsao H N, et al. Science, 2011, 334(6056):629-634. 

    2. [2]

      O'Regan B, Grätzel M. Nature, 1991, 353(6346):737-740. 

    3. [3]

      Kay A, Grätzel M. J. Phys. Chem. A, 1993, 97(23):6272-6277. 

    4. [4]

      Kato F, Kikuchi A, Okuyama T, et al. Angew. Chem. Int. Ed., 2012, 51(40):10177-10180. 

    5. [5]

      Meng X D, Yin M, Shu T, et al. J. Inorg. Mater., 2018, 33(5):483-493. 

    6. [6]

    7. [7]

      Mandal S, Nayak S K, Mallampalli S, et al. ACS Appl. Mater. Interf., 2014, 6(1):130-136. 

    8. [8]

      Fuhrhop J H. Langmuir, 2014, 30(1):1-12. 

    9. [9]

      Dawsey A C, Li V, Hamilton K C, et al. Dalton Transac., 2012, 41(26):7994-8002. 

    10. [10]

      Mofford D M, Reddy G R, Miller S C. J. Am. Chem. Soc., 2014, 136(38):13277-13282. 

    11. [11]

      Brockmeyer F, Morosow V, Martens J. Org. Biomol. Chem., 2015, 13(11):3341-3346. 

    12. [12]

      Velusamy M, Justin Thomas K R, Lin J T, et al. Org. Lett., 2005, 7(10):1899-1902. 

    13. [13]

      Wang Y, Zhou E J, Liu Y Q, et al. Chem. Mater., 2007, 19(14):3361-3363. 

    14. [14]

      Luo J, Xu M F, Li R Z, et al. J. Am. Chem. Soc., 2014, 136(1):265-272. 

    15. [15]

      Kurotobi K, Toude Y, Kawamoto K, et al. Chem. Eur. J. 2013, 19(50):17075-17081.

    16. [16]

      Imahori H, Umeyama T, Kurotobi K, et al. Chem. Commun., 2012, 48(34):4032-4045. 

    17. [17]

      Ichiki T, Matsuo Y, Nakamura E. Chem. Commun., 2013, 49(3):279-281. 

    18. [18]

      D'Souza F, Amin A N, El-Khouly M E, et al. J. Am. Chem. Soc., 2012, 134(1):654-664. 

    19. [19]

      Cao J, Liu J C, Deng W T, et al. Electrochim. Acta, 2013, 112:515-521. 

    20. [20]

      Wu Y, Zhang Q, Liu J C, et al. Org. Electron., 2017, 41:301-306. 

    21. [21]

      Han F M, Yang J Y, Zhe Y, et al. Dalton Transac., 2016, 45(21):8862-8868. 

    22. [22]

      Palomares E, Martínez-díaz M V, Haque S A, et al. Chem. Commun., 2004, (18):2112-2113.

    23. [23]

      Kira A, Umeyama T, Matano Y, et al. J. Am. Chem. Soc., 2009, 131(9):3198-3200. 

    24. [24]

      Wang P, Zakeeruddin S M, Comte P, et al. J. Phys. Chem. B, 2003, 107(51):14336-14341. 

    25. [25]

      Cai N, Wang P, Zhang M, et al. Adv. Funct. Mater., 2013, 23(14):1846-1854. 

    26. [26]

      Trachsel D. Helv. Chim. Acta, 2002, 85(9):3019-3026. 

    27. [27]

    28. [28]

    29. [29]

      He C, Lin Z H, He Z, et al. Angew. Chem. Int. Ed., 2008, 47(5):877-881. 

    30. [30]

      Ray A, Banerjee S, Sen S, et al. Struct. Chem., 2008, 19(2):209-217. 

    31. [31]

      Mangalam N A, Sheeja S R, Kurup M R P. Polyhedron, 2010, 29(18):3318-3323. 

    32. [32]

      Leondiadis L, Momenteau M. J. Org. Chem., 1989, 54(26):6135-6138. 

    33. [33]

      Seo K D, Lee M J, Song H M, et al. Dyes Pigments, 2012, 94(1):143-149. 

    34. [34]

    35. [35]

      Subbaiyan N K, Wijesinghe C A, F D'Souza. J. Am. Chem. Soc., 2009, 131(41):14646-14647. 

    36. [36]

      Mathew S, Yella A, Gao P, et al. Nat. Chem., 2014, 6(3):242-247. 

    37. [37]

    38. [38]

      Wang Q, Moser J E, Grätzel M. J. Phys. Chem. B, 2005, 109(31):14945-14953. 

    39. [39]

      Barea E M, Gónzalea-Pedro V, Ripollés-Sanchis T, et al. J. Phys. Chem. C, 2011, 115(21):10898-10902. 

  • 加载中
    1. [1]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    2. [2]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    3. [3]

      Renjie XueChao MaJing HeXuechao LiYanning TangLifeng ChiHaiming Zhang . Catassembly in the Host-Guest Recognition of 2D Metastable Self-Assembled Networks. Acta Physico-Chimica Sinica, 2024, 40(9): 2309011-0. doi: 10.3866/PKU.WHXB202309011

    4. [4]

      Wenjian Zhang Mengxin Fan Wenwen Fei Wei Bai . Cultivation of Critical Thinking Ability: Based on RAFT Polymerization-Induced Self-Assembly. University Chemistry, 2025, 40(4): 108-112. doi: 10.12461/PKU.DXHX202406099

    5. [5]

      Yikai WangXiaolin JiangHaoming SongNan WeiYifan WangXinjun XuCuihong LiHao LuYahui LiuZhishan Bo . Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-0. doi: 10.3866/PKU.WHXB202406007

    6. [6]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    7. [7]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    8. [8]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    9. [9]

      Fanpeng MengFei ZhaoJingkai LinJinsheng ZhaoHuayang ZhangShaobin Wang . Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-0. doi: 10.1016/j.actphy.2025.100095

    10. [10]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    11. [11]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    12. [12]

      Yuxia Luo Xiaoyu Xie Fangfang Chen . 药物递送魔法师——分子印迹聚合物. University Chemistry, 2025, 40(8): 202-210. doi: 10.12461/PKU.DXHX202409129

    13. [13]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    14. [14]

      Nengmin ZHUWenhao ZHUXiaoyao YINSongzhi ZHENGHao LIZeyuan WANGWenhao WEIXuanheng CHENWeihai SUN . Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419

    15. [15]

      Pengyu DongYue JiangZhengchi YangLicheng LiuGu LiXinyang WenZhen WangXinbo ShiGuofu ZhouJun-Ming LiuJinwei Gao . NbSe2 Nanosheets Improved the Buried Interface for Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-0. doi: 10.3866/PKU.WHXB202407025

    16. [16]

      Yameen AhmedXiangxiang FengYuanji GaoYang DingCaoyu LongMustafa HaiderHengyue LiZhuan LiShicheng HuangMakhsud I. SaidaminovJunliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057

    17. [17]

      Yawen GuoDawei LiYang GaoCuihong Li . Recent Progress on Stability of Organic Solar Cells Based on Non-Fullerene Acceptors. Acta Physico-Chimica Sinica, 2024, 40(6): 2306050-0. doi: 10.3866/PKU.WHXB202306050

    18. [18]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    19. [19]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    20. [20]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

Metrics
  • PDF Downloads(4)
  • Abstract views(580)
  • HTML views(147)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return