Citation: LIANG Yan-zheng, WANG Xue-tao, ZHANG Qian-wei, LUO Shao-feng, ZHOU Yu-feng. Study on the preparation and catalytic performance of bimetallic Ce-Mn/ZSM-5 catalyst for selective catalytic reduction of nitric oxide by NH3[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(2): 205-212. shu

Study on the preparation and catalytic performance of bimetallic Ce-Mn/ZSM-5 catalyst for selective catalytic reduction of nitric oxide by NH3

  • Corresponding author: WANG Xue-tao, wxt7682@163.com
  • Received Date: 16 December 2019
    Revised Date: 13 January 2020

    Fund Project: Henan Science and Technology Innovation Talent Program (Outstanding Youth) 114100510010Natural Science Foundation of Henan Province 182300410256The project was supported by the National Natural Science Foundation of China (50806020), Henan Science and Technology Innovation Talent Program (Outstanding Youth) (114100510010) and Natural Science Foundation of Henan Province(182300410256)The project was supported by the National Natural Science Foundation of China 50806020

Figures(10)

  • A series of Ce-Mn/ZSM-5 catalyst with different mass ratios of Ce and Mn was prepared by impregnation method, and the influence of Ce loading on denitrification performance was investigated in a fixed-bed reactor. XRD, TEM, NH3-TPD, H2-TPR, in-situ DRIFTS were used to characterize the catalysts. The results show that the bimetallic Ce-Mn/ZSM-5 have a broad active temperature window. Especially, the catalyst with Ce/Mn mass ratio of 0.4 has the best denitrification efficiency, and the denitrification rate can be higher than 80% between 266 and 465℃, and up to 97.28% at 370℃.Manganese and cerium species can be well dispersed on the surface of the support without changing the crystal structure of ZSM-5.0.4Ce-Mn/ZSM-5 catalyst has abundant acidic sites, good redox performance. There are both E-R mechanism and L-H mechanism in NH3-SCR reaction.
  • 加载中
    1. [1]

      GUO Feng, YU Jian, MU Yang, CHU Mo, XU Guang-wen. Preparation of catalyst with wide working-temperature and the reaction mechanism of flue gas denitration[J]. J Fuel Chem Technol, 2014,42(1):101-109.  

    2. [2]

      LIU F D, SHAN W P, SHI X Y, ZHANG C B, HE H. Research progress in vanadium-free catalysts for the selective catalytic reduction of NO with NH3[J]. Chin J Catal, 2011,32(7):1113-1128.  

    3. [3]

      XIONG Zhi-bo, LU Chun-mei. Study on the modification of iron-cerium mixed oxide catalyst for selective catalytic reduction of NO[J]. J Fuel Chem Technol, 2013,41(3):361-367.  

    4. [4]

      YANG Lin-jun, SHI Ya-juan, LUO Lü-yuan. Review of emission characteristics of fine particles during coal-fired SCR DeNOx process[J]. Proc CSEE, 2016,36(16):4342-4348.  

    5. [5]

      HU Hai-peng, WANG Xue-tao, ZHANG Xing-yu, SU Xiao-xin, YANG Xiao-dong, SHI Rui-hua. Performance of Fe-Cu/ZSM-5 catalyst in the DeNOx process via NH3-SCR[J]. J Fuel Chem Technol, 2018,46(2):225-232.  

    6. [6]

      MA Teng-kun, FANG Jing-rui, MENG Liu-bang, WANG Lan. Research progress on application of titanium dioxide in SCR denitration catalystat low temperature[J]. Bull Chin Ceram Soc, 2016,35(6):1733-1737, 1743.  

    7. [7]

      LI Y, LI Y, WAN Y, ZHAO S, GUAN Q, TIAN Y. Structure-performance relationships of MnO2 nanocatalyst for the low-temperature SCR removal of NOx under ammonia[J]. RSC Adv, 2016,6(60):54926-54937.  

    8. [8]

      QIAO Nan-li, YANG Yi-xin, LIU Qing-long, SONG Huan-qiao, YU Geng-zhi, LUO Ming-sheng. Influence of different supports on the physicochemical properties and denitration performance of the supported MnCe-based catalysts for NH3-SCR[J]. J Fuel Chem Technol, 2018,46(6):733-742.  

    9. [9]

      PEÑA D A, UPHADE B S, REDDY E P, SMIRNIOTIS P G. Identification of surface species on titania-supported manganese, chromium, and copper oxide low-temperature scr catalysts[J]. J Phys Chem B, 2004,108(28):9927-9936.  

    10. [10]

      Ga ng, WU Hu, SONG Chong-lin, BIN Feng. Mn/ZSM-5 catalyst and the properties of selective catalytic reduction[J]. J Eng Thermophys, 2011,32(9):1597-1600.  

    11. [11]

      LOU X, LIU P, LI J, LI Z, HE K. Effects of calcination temperature on Mn species and catalytic activities of Mn/ZSM-5 catalyst for selective catalytic reduction of NO with ammonia[J]. Appl Surf Sci, 2014,307:382-387.  

    12. [12]

      ZHANG Guang-xue, ZHOU An-qi, FAN Hai-yan, WANG Jin-qing, CHI Zuo-he. Preparation of Fe-Ce oxide SCR denitration catalyst and its performance study[J]. J Fuel Chem Technol, 2015,43(10):1267-1272.  

    13. [13]

      DONG X, WANG J, ZHAO H, LI Y. The promotion effect of CeOx on Cu-SAPO-34 catalyst for selective catalytic reduction of NOx with ammonia[J]. Catal Today, 2015,258:28-34.  

    14. [14]

      JIN Q, SHEN Y, SUI G, TAO X, PAN Y, ZHU S. Synergistic catalytic removals of NO, CO and HC over CeO2 modified Mn-Mo-W-Ox/TiO2-SiO2 catalyst[J]. J Rare Earth, 2018,36(2):148-155.  

    15. [15]

      JIANG L J, LIU Q C, ZHAO Q, REN S, KONG M, YAO L, MENG F. Promotional effect of Ce on the SCR of NO with NH3 at low temperature over MnOx supported by nitric acid-modified activated carbon[J]. Res Chem Intermed, 2018,44(3):1729-1744.  

    16. [16]

      YAO X, MA K, ZOU W, HE S, AN J, YANG F, DONG L. Influence of preparation methods on the physicochemical properties and catalytic performance of MnOx-CeO2 catalysts for NH3-SCR at low temperature[J]. Chin J Catal, 2017,38(1):146-159.  

    17. [17]

      CAO Y, LAN L, FENG X, YANG Z Z, ZOU S, XU H D, LI Z Q, GONG M C, CHEN Y Q. Cerium promotion on the hydrocarbon resistance of a Cu-SAPO-34 NH3-SCR monolith catalyst[J]. Catal Sci Technol, 2015,5(9):4511-4521.  

    18. [18]

      CAO Y, LAN L, FENG X, YANG Z Z, ZOU S, XU H D, LI Z Q, GONG M C, CHEN Y Q. Promotional effect of Ce on Cu-SAPO-34 monolith catalyst for selective catalytic reduction of NOx with ammonia[J]. J Mol Catal A:Chem, 2015,398:304-311.  

    19. [19]

      HUANG Zeng-bin, LI Cui-qing, WANG Zhen, XU Sheng-mei, FENG Ling-bo, WANG Hong, SONG Yong-ji, ZAHNG Wei. Performance of Mn-Ce catalysts supported on different zeolites in the NH3-SCR of NOx[J]. J Fuel Chem Technol, 2016,44(11):1388-1393.  

    20. [20]

      LONG R Q, YANG R T. Temperature-programmed desorption/surface reaction (TPD/TPSR) study of Fe-exchanged ZSM-5 for selective catalytic reduction of nitric oxide by ammonia[J]. J Catal, 2001,198(1):20-28.  

    21. [21]

      WANG C, ZHAO Y, ZHANG C, YAN X, CAO P. Effect of iron doping on SO2 and H2O resistance of honeycomb cordierite-based Mn-Ce/Al2O3 catalyst for NO removal at low temperature[J]. Res Chem Intermed, 2018,44(5):3135-3150.  

    22. [22]

      LIU Q, FU Z, MA L, NIU H, LIU C, LI J, ZHANG Z. MnOx-CeO2 supported on Cu-SSZ-13:A novel SCR catalyst in a wide temperature range[J]. Appl Catal A:Gen, 2017,547:146-154.  

    23. [23]

      JIN Q, SHEN Y, ZHU S, LI X, HU M. Promotional effects of erincorporation in CeO2 (ZrO2)/TiO2 for selective catalytic reduction of NO by NH3[J]. Chin J Catal, 2016,37(9):1521-1528.

    24. [24]

      GAO F, TANG X, YI H, LI J J, ZHAO S Z, WANG J G, CHU C, LI C L. Promotional mechanisms of activity and SO2 tolerance of Co-or Ni-doped MnOx-CeO2 catalysts for SCR of NOx with NH3 at low temperature[J]. Chem Eng J, 2017,317:20-31.  

    25. [25]

      GAO G, SHI J W, LIU C, GAO C, FAN Z, NIU C. Mn/CeO2catalysts for SCR of NOx with NH3:Comparative study on the effect of supports on low-temperature catalytic activity[J]. Appl Surf Sci, 2017,411:338-346.  

    26. [26]

      WANG Xue-tao, HU Hai-peng, ZHANG Xing-yu, SU Xiao-xin, YANG Xiao-dong, ZHANG Qian-wei, SHI Rui-hua, LIANG Yan-zheng. Experimental study on Cu/HZSM-5 catalyst for SCR denitration at low temperature[J]. Proc CSEE, 2018,38(20):6029-6036.  

    27. [27]

      LIANG Hui, ZHA Xian-bin, GUI Ke-ting. A study of selective catalysis reduction denitration performance and adsorption of NH3 and NO over Fe2O3 catalyst[J]. Proc CSEE, 2014,34(32):5734-5740.  

  • 加载中
    1. [1]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    2. [2]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    3. [3]

      Feibin WeiYongfang RaoYu HuangWei WangHui Mei . The new challenges for the development of NH3-SCR catalysts under new situation of energy transition in power generation industry. Chinese Chemical Letters, 2024, 35(6): 108931-. doi: 10.1016/j.cclet.2023.108931

    4. [4]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    5. [5]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    6. [6]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    7. [7]

      Jinpeng DuJunlin ChenYulong ShanTongliang ZhangYu SunZhongqi LiuXiaoyan ShiWenpo ShanYunbo YuHong He . Insight into the effects of C3H6 on fresh and hydrothermally aged Cu-SSZ-39 catalysts. Chinese Chemical Letters, 2025, 36(3): 110019-. doi: 10.1016/j.cclet.2024.110019

    8. [8]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    9. [9]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    10. [10]

      Guowen Xing Guangjian Liu Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058

    11. [11]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    12. [12]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    13. [13]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    14. [14]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    15. [15]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    16. [16]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    17. [17]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    18. [18]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    19. [19]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    20. [20]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

Metrics
  • PDF Downloads(8)
  • Abstract views(418)
  • HTML views(53)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return