Effect of modification to Hβ with F on the performance of Mo-Ni/F-Hβ catalyst in the sulfur transfer reactions of FCC gasoline
- Corresponding author: SHEN Zhi-bing, szb@xsyu.edu.cn
Citation:
LIANG Sheng-rong, LIU Feng, WANG Qian, WU Rui-rui, ZHANG Jun-tao, SHEN Zhi-bing. Effect of modification to Hβ with F on the performance of Mo-Ni/F-Hβ catalyst in the sulfur transfer reactions of FCC gasoline[J]. Journal of Fuel Chemistry and Technology,
;2020, 48(4): 405-413.
YU F, WANG Q, YUAN B, XIE C X, YU S T. Alkylation desulfurization of FCC gasoline over organic-inorganic heteropoly acid catalyst[J]. J Chem Eng, 2017,309:298-304. doi: 10.1016/j.cej.2016.10.003
SHEN Z, ZHANG J, REN T, LIANG S. The performance of benzenesulfonic acid catalyst on the alkylation of thiophenic sulfur[J]. Appl Petrochem Res, 2016,6(1):35-40. doi: 10.1007/s13203-015-0116-z
FU W, ZHANG L, WU D, YU Q, TANG T, TANG T. Mesoporous molecular sieve ZSM-5 supported Ni2P catalysts with high activity in the hydrogenation of phenanthrene and 4, 6-dimethyldibenzothiophene[J]. Ind Eng Chem Res, 2016,55(26):7085-7095. doi: 10.1021/acs.iecr.6b01583
GUO B, LI Y. Analysis and simulation of reactive distillation for gasoline alkylation desulfurization[J]. Chem Eng Sci, 2012,72:115-125.
YU Y, LI R, LI Q. Alkylation of thiophenic compounds with 1-hexene over sulfonated solid acid catalysts[J]. Prog React Kinet Mech, 2013,38(4):425-430.
SAAD A, AL-BOGAMI , HUGO I. Catalytic conversion of benzothiophene over a H-ZSM5 based catalyst[J]. Fuel, 2013,108:490-501. doi: 10.1016/j.fuel.2012.11.008
RISTIĆ A, FISCHER F, HAUER A, LOGAR N Z. Improved performance of binder-free zeolite Y for low-temperature sorption heat storage[J]. J Mater Chem A, 2018,6(24):11521-11530. doi: 10.1039/C8TA00827B
GUO B, WANG R, LI Y. The performance of solid phosphoric acid catalysts and macroporous sulfonic resins on gasoline alkylation desulfurization[J]. Fuel Process Technol, 2010,91(11):1731-1735. doi: 10.1016/j.fuproc.2010.07.012
FAVARETTO L, AN J, SAMBO M, DE NISI A, BETTINI C, MELUCCI M, KOVTUN A, LISCIO A, PALERMO V, BOTTONI A, ZERBETTO F, CALVARESI M, ZERBETTO F. Graphene oxide promotes site-selective allylic alkylation of thiophenes with alcohols[J]. Org Lett, 2018,20(12):3705-3709. doi: 10.1021/acs.orglett.8b01531
SRIVASTAVA V C. An evaluation of desulfurization technologies for sulfur removal from liquid fuels[J]. Rsc Adv, 2012,2(3):759-783. doi: 10.1039/C1RA00309G
XU Ya-rong, SHEN Ben-xian, XU Xin-liang, ZHAO Ji-gang, LIU Gang. Transfer performance of solid mixed acid catalytic alkylation of sulfur in FCC gasoline[J]. J East China Univ Technol:Nat Sci Ed, 2010,36(5):633-638. doi: 10.3969/j.issn.1006-3080.2010.05.006
NOCCA J L, COSYNS J, DEBUISSCHERT Q, DIDILLON B. The domino interaction of refinery processes for gasoline quality attainment. San Antonio, TX: Proceedings of the NPRA Annual Meeting, March 2000, AM-00-61.
Zhou Zhi-yuan. Study on acid catalysts for diene thioetherification[C]//Catalysis Committee of the Chinese Chemical Society. Proceedings of the 11th National Youth catalysis Academic Conference (2). Catalysis Committee of the Chinese Chemical Society: School of chemistry and chemistry, China University of Petroleum (East China), 2007: 2.
PATMAN H M. Method of mercaptan removal: CN, 00812936.3[P]. 2000-07-03.
HEARN D, HICKEY T P. Gasoline desulfurization method: CN, 96196515.0[P]. 1998-09-06.
ZHANG Z, GUO X, LIU S, ZHU X, XU L. Modification of Hβ molecular sieve by fluorine and its influence on olefin alkylation thiophenic sulfur in gasoline[J]. Fuel Process Technol, 2008,89(1):103-110. doi: 10.1016/j.fuproc.2007.08.003
WANG R, WAN J, LI Y, SUN H. An improvement of MCM-41 supported phosphoric acid catalyst for alkylation desulfurization of fluid catalytic cracking gasoline[J]. Fuel, 2015,143:504-511. doi: 10.1016/j.fuel.2014.11.093
SHI R, LI Y, WANG R, GUO B. Alkylation of thiophenic compounds with olefins and its kinetics over MCM-41 supported phosphoric acid in fcc gasoline[J]. Catal Lett, 2010,139(3/4):114-122.
PAN Hong-yan, TIAN Min, LIN Qian. Effect of silicon aluminum ratio on the performance of ZSM-5 zeolite catalyst for methanol to olefin[J]. Nat Gas Ind, 2015,40(1):9-12.
BRZOZOWSKI R, SKUPIŃSKI W. Molecular sieve pore entrance effect on shape selectivity in naphthalene isopropylation[J]. J Catal, 2002,210(2):313-318.
COLON G, FERINO I, ROMBI E. Liquid-phase alkylation of naphthalene by isopropanol over molecular sieves. Part 1:HY molecular sieves[J]. Appl Catal A:Gen, 1998,168(1):81-92. doi: 10.1016/S0926-860X(97)00346-3
SMIRNIOTIS P G, RUCKENSTEIN E J. Comparison between zeolite β and γ-Al2O3 supported Pt for reforming reactions[J]. J Catal, 1993,140(2):526-542.
RUCKENSTEIN E, SMIRNIOTIS P G. Two sources of synergism in the reforming ofn-hexane, methylcyclopentane, methylcyclohexane mixtures over composites of basic and acidic zeolites[J]. Catal Lett, 1994,24(1/2):123-132.
SMIRNIOTIS P G, RUCKENSTEIN E. Increased aromatization in the reforming of mixtures of n-hexane, methylcyclopentane and methylcyclohexane over composites of Pt/BaKL zeolite with Pt/β or Pt/USY zeolites[J]. Appl Catal A:Gen, 1995,123(1):59-88. doi: 10.1016/0926-860X(94)00241-X
BLACKMOND D G, GOODWIN J G, LESTER J E. In situ Fourier transform infrared spectroscopy study of HY cracking catalysts:Coke formation and the nature of the active sites[J]. J Catal, 1982,78(1):34-43.
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
Wentao Xu , Xuyan Mo , Yang Zhou , Zuxian Weng , Kunling Mo , Yanhua Wu , Xinlin Jiang , Dan Li , Tangqi Lan , Huan Wen , Fuqin Zheng , Youjun Fan , Wei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003
Yongwei ZHANG , Chuang ZHU , Wenbin WU , Yongyong MA , Heng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386
Zhaoyu Wen , Na Han , Yanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001
Huiwei Ding , Bo Peng , Zhihao Wang , Qiaofeng Han . Advances in Metal or Nonmetal Modification of Bismuth-Based Photocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2305048-0. doi: 10.3866/PKU.WHXB202305048
Haodong JIN , Qingqing LIU , Chaoyang SHI , Danyang WEI , Jie YU , Xuhui XU , Mingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048
Jun LI , Huipeng LI , Hua ZHAO , Qinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401
Wei Sun , Yongjing Wang , Kun Xiang , Saishuai Bai , Haitao Wang , Jing Zou , Arramel , Jizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015
Yi Yang , Xin Zhou , Miaoli Gu , Bei Cheng , Zhen Wu , Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002
Fangxuan Liu , Ziyan Liu , Guowei Zhou , Tingting Gao , Wenyu Liu , Bin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
Xuejie Wang , Guoqing Cui , Congkai Wang , Yang Yang , Guiyuan Jiang , Chunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044
Xueting Feng , Ziang Shang , Rong Qin , Yunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005
Yingtong Shi , Guotong Xu , Guizeng Liang , Di Lan , Siyuan Zhang , Yanru Wang , Daohao Li , Guanglei Wu . PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-0. doi: 10.1016/j.actphy.2025.100082
Dan Li , Hui Xin , Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046
Lele Feng , Xueying Bai , Jifeng Pang , Hongchen Cao , Xiaoyan Liu , Wenhao Luo , Xiaofeng Yang , Pengfei Wu , Mingyuan Zheng . Single-atom Pd boosted Cu catalysts for ethanol dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(9): 100100-0. doi: 10.1016/j.actphy.2025.100100
Yushan Cai , Fang-Xing Xiao . Revisiting MXenes-based Photocatalysis Landscape: Progress, Challenges, and Future Perspectives. Acta Physico-Chimica Sinica, 2024, 40(8): 2306048-0. doi: 10.3866/PKU.WHXB202306048
1: hydrogen source; 2: drier; 3: filter; 4: pressure reducing valve; 5: gas flowmeter; 6: one way valve; 7: gas feed vent; 8: reactor inlet pressure; 9: electronic balance; 10: liquid feed; 11: filter; 12: feed pump; 13: one way valve; 14: liquid feed vent; 15: gas liquid mixing tee; 16: temperature controller; 17: temperature displayer; 18: thermocouple for temperature controller; 19: thermocouple temperature displayer; 20: tubular reactor; 21: heating furnace; 22: condenser; 23: high separator; 24: low separator; 25: cooling water outlet; 26: cooling water inlet; 27: reactor outlet pressure; 28: dryer; 29: back pressure valve; 30: sampling valve; 31: sampling pressure indicator; 32: rotameter; 33: sampling port; 34: sampling vent; 35: tail gas vent
a: H β; b: H β (0.3%F); c: H β (0.5%F); d: H β (0.7%F)