Citation: ZHENG Hua-yan, ZHANG Min, FU Hua, ZHANG Hua-cheng, LI Zhong. CO hydrogenation to ethanol over copper-nickel bimetallic catalyst prepared by isomorphous substitution method[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(1): 84-91. shu

CO hydrogenation to ethanol over copper-nickel bimetallic catalyst prepared by isomorphous substitution method

  • Corresponding author: LI Zhong, lizhong@tyut.edu.cn
  • Received Date: 18 September 2018
    Revised Date: 15 November 2018

    Fund Project: the National Natural Science Foundation of China 21576179the National Natural Science Foundation of China U1510203The project was supported by the National Natural Science Foundation of China (21576179, U1510203)

Figures(6)

  • A series of Cu-Ni bimetallic catalysts derived from nickel-malachite were prepared by an oriented isomorphous substitution method. The effects of the precursor structure and catalysts surface composition on the catalytic performance CO hydrogenation to ethanol were investigated in an agitated slurry autoclave reactor. The studies demonstrated that the pure (Cu, Ni)2CO3(OH)2 phase was obtained by oriented isomorphous substitution method and Ni2+ was rich on the (Cu, Ni)2CO3(OH)2 precursor surface. Uniform distribution of (Cux, Ni1-x)O solid solution were found in CuO crystal lattice. After calcination, the (Cux, Ni1-x)O solid solution dispersed in the crystal structure of CuO uniformly. Cu and Ni dispersed in the catalysts evenly to form an active interface after reduction, which promoted the synthesis of higher alcohols. Discontinuously distributed Ni-active sites prevented the carbon chain from growing further, and enhanced the selectivity of ethanol. The catalyst prepared by the feeding materials with Ni/Cu molar ratio=45:100 was found to exhibit higher activity and ethanol selectivity due to the strong interaction between (Cux, Ni1-x)O solid solution and CuO phase.
  • 加载中
    1. [1]

      AO M, PHAM G H, SUNARSO J, TADE M O, LIU S. Active centers of catalysts for higher alcohol synthesis from syngas:A review[J]. ACS Catal, 2018,8(8):7025-7050.  

    2. [2]

      LUK H T, MONDELLI C, FERRE D C, STEWART J A, PEREZ-RAMIREZ J. Status and prospects in higher alcohols synthesis from syngas[J]. Chem Soc Rev, 2017,46(5):1358-1426. doi: 10.1039/C6CS00324A

    3. [3]

      WANG L F, CAO A, LIU G L, ZHANG L H, LIU Y. Bimetallic CuCo nanoparticles derived from hydrotalcite supported on carbon fibers for higher alcohols synthesis from syngas[J]. Appl Sur Sci, 2016,360:77-85. doi: 10.1016/j.apsusc.2015.10.234

    4. [4]

      XU X D, DOESBURG E B M, SCHOLTEN J J F. Synthesis of higher alcohols from syngas-recently patented catalysts and tentative ideas on the mechanism[J]. Catal Today, 1987,2(1):125-170.  

    5. [5]

      SU J J, MAO W, XU X C, YANG Z, LI H L, XU J, HAN Y F. Kinetic study of higher alcohol synthesis directly from syngas over CoCu/SiO2 catalysts[J]. AIChE J, 2014,60(5):1797-1809. doi: 10.1002/aic.v60.5

    6. [6]

      WANG P, CHEN S Y, BAI Y X, GAO X F, LI X L, SUN K, XIE H J, YANG G H, HAN Y Z, TAN Y S. Effect of the promoter and support on cobalt-based catalysts for higher alcohols synthesis through CO hydrogenation[J]. Fuel, 2017,195:69-81. doi: 10.1016/j.fuel.2017.01.050

    7. [7]

      XU R, YANG C, WEI W, LI W H, SUN Y H, HU T D. Fe-modified CuMnZrO2 catalysts for higher alcohols synthesis from syngas[J]. J Mol Catal A:Chem, 2004,221:51-58. doi: 10.1016/j.molcata.2004.07.003

    8. [8]

      ZHAO N, XU R, WEI W, SUN Y H. CuMnZrO2 catalyst for alcohol synthesis by fischertropsch modified element[J]. React Kinet Catal Lett, 2002,75(2):297-304. doi: 10.1023/A:1015203113811

    9. [9]

      XIAO K, QI X Z, BAO Z H, WANG X X, ZHONG L S, FANG K G, LIN M G, SUN Y H. CuFe, CuCo and CuNi nanoparticles as catalysts for higher alcohol synthesis from syngas:A comparative study[J]. Catal Sci Technol, 2013,3(6):1591-1602. doi: 10.1039/c3cy00063j

    10. [10]

      NAGHASH A R, ETSELL T H, XU S. XRD and XPS study of Cu-Ni interactions on reduced copper-nickel-aluminum oxide solid solution catalysts[J]. Chem Mater, 2006,18:2480-2488. doi: 10.1021/cm051910o

    11. [11]

      ZANDER S, E L KUNKES E L, SCHUSTER M E, SCHUMANN J, WEINBERG G, TESCHNER D, JACOBSEN N, SCHLOGL R, BEHRENS M. The role of the oxide component in the development of copper composite catalysts for methanol synthesis[J]. Angew Chem Int Ed Eng, 2013,52(25):6536-6540. doi: 10.1002/anie.201301419

    12. [12]

      LI Zhong, ZHANG Xiao-bing, GUO Qi-hai, LIU Yan, ZHENG Hua-yan. Influence of precipitation and aging temperature on the performance of CuO/ZnO/Al2O3 catalyst for methanol synthesis in slurry reactor[J]. J Fuel Chem Technol, 2012,40(5):569-575. doi: 10.3969/j.issn.0253-2409.2012.05.010

    13. [13]

      BEHRENS M, GIRGSDIES F. Structural effects of Cu/Zn substitution in the malachite-rosasite system[J]. Z Anorg Allg Chem, 2010,636(6):919-927. doi: 10.1002/zaac.201000028

    14. [14]

      BEHRENS M. Coprecipitation:An excellent tool for the synthesis of supported metal catalysts-from the understanding of the well known recipes to new materials[J]. Catal Today, 2015,246:46-54. doi: 10.1016/j.cattod.2014.07.050

    15. [15]

      BEHRENS M. Meso-and nano-structuring of industrial Cu/ZnO/(Al2O3) catalysts[J]. J Catal, 2009,267(1):24-29.  

    16. [16]

      LI J, ZHENG H Y, ZHANG X C, LI Z. First-principles investigation on Cu/ZnO catalyst precursor:Energetic, structural and electronic properties of Zn-doped Cu2(OH)2CO3[J]. Comp Mater Sci, 2015,96:1-9. doi: 10.1016/j.commatsci.2014.08.038

    17. [17]

      FANG De-ren, LIU Zhong-ming, XU Xiu-feng, ZHANG Hui-min. Influence of aging time on the properties of Cu/ZnO/Al2O3 catalysts for methanol synthesis[J]. J Fuel Chem Technol, 2006,34(1):96-99. doi: 10.3969/j.issn.0253-2409.2006.01.020

    18. [18]

      TARASOV A, SCHUMANN J, GIRGSDIES F, THOMAS N, BEHRENS M. Thermokinetic investigation of binary Cu/Zn hydroxycarbonates as precursors for Cu/ZnO catalysts[J]. Thermochim Acta, 2014,591(0):1-9.  

    19. [19]

      GAO Y, MENG F H, JI K M, SONG Y, LI Z. Slurry phase methanation of carbon monoxide over nanosized Ni-Al2O3 catalysts prepared by microwave-assisted solution combustion[J]. Appl Catal A:Gen, 2016,510:74-83. doi: 10.1016/j.apcata.2015.11.006

    20. [20]

      JING Jie-ying, ZHANG Zi-yi, WANG Shi-dong, LI Wen-ying. Influence of calcination temperature on the structure and catalytic reforming performance of Ni/CaO-Al2O3 catalyst[J]. J Fuel Chem Technol, 2018,46(6):673-679. doi: 10.3969/j.issn.0253-2409.2018.06.005 

    21. [21]

      BEHRENS M, STUDT F, KASATKIN I, KUHL S, HAVECKER M, ABILD-PEDERSEN F, ZANDER S, GIRGSDIES F, KURR P, KNIEP B L, TOVAR M, FISCHER R W, NORSKOV J K, SCHLOGL R. The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts[J]. Science, 2012,336(6083):893-897. doi: 10.1126/science.1219831

    22. [22]

      WU Q X, DUCHSTEIN L D L, CHIARELLO G L, CHRISTENSEN J M, DAMSGAARD C D, ELKJAR C F, WAGNER J B, TEMEL B, GRUNWALDT J D, JENSEN A D. In situ observation of Cu-Ni alloy nanoparticle formation by X-Ray diffraction, X-Ray absorption spectroscopy, and transmission electron microscopy:Influence of Cu/Ni ratio[J]. ChemCatChem, 2014,6(1):301-310. doi: 10.1002/cctc.v6.1

    23. [23]

      CAO A, LIU G L, YUE Y Z, ZHANG L H, LIU Y. Nanoparticles of Cu-Co alloy derived from layered double hydroxides and their catalytic performance for higher alcohol synthesis from syngas[J]. RSC Adv, 2015,5(72):58804-58812. doi: 10.1039/C5RA05190H

    24. [24]

      GUO Qiang-sheng, MAO Dong-sen, YU Jun, HAN Lu-peng. Effects of different supports on the catalytic performance of supported Cu-Fe catalyst for CO hydrogenation[J]. J Fuel Chem Technol, 2012,40(9):1103-1109. doi: 10.3969/j.issn.0253-2409.2012.09.013

  • 加载中
    1. [1]

      Tong Zhou Liyi Xie Chuyu Liu Xiyan Zheng Bao Li . Between Sobriety and Intoxication: The Fascinating Journey of Sauce-Flavored Latte. University Chemistry, 2024, 39(9): 55-58. doi: 10.12461/PKU.DXHX202312048

    2. [2]

      Siwei Lv Tantian Tan Xinyue Li Siyan Zhang Mingyuan Zhang Minghao Li Hangshuo Guo Zhaorong Li Liangjie Dong Fengshuo Zhang Junlong Zhao . Competition of the “King of Transboundary Medicine”. University Chemistry, 2024, 39(9): 102-108. doi: 10.12461/PKU.DXHX202403034

    3. [3]

      Fangxuan Liu Ziyan Liu Guowei Zhou Tingting Gao Wenyu Liu Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071

    4. [4]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    5. [5]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    6. [6]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    7. [7]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    8. [8]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    9. [9]

      Qiaowen CHANGKe ZHANGGuangying HUANGNuonan LIWeiping LIUFuquan BAICaixian YANYangyang FENGChuan ZUO . Syntheses, structures, and photo-physical properties of iridium phosphorescent complexes with phenylpyridine derivatives bearing different substituting groups. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 235-244. doi: 10.11862/CJIC.20240311

    10. [10]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    11. [11]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    12. [12]

      Xiaofang Li Zhigang Wang . Modulating dz2-orbital occupancy of Au cocatalysts for enhanced photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-. doi: 10.1016/j.actphy.2025.100080

    13. [13]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    14. [14]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    15. [15]

      Lewang Yuan Yaoyao Peng Zong-Jie Guan Yu Fang . 二维共价有机框架作为光催化剂在有机合成中的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-. doi: 10.1016/j.actphy.2025.100086

    16. [16]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    17. [17]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    18. [18]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    19. [19]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    20. [20]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

Metrics
  • PDF Downloads(9)
  • Abstract views(2669)
  • HTML views(335)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return