Citation: Wang Peng, Li Lihua, Wu Xian, Ma Cheng. Research Progress of Polyoxometalate-Based Photocatalysts in the Dyes Photodegradation[J]. Chemistry, ;2019, 82(5): 415-423. shu

Research Progress of Polyoxometalate-Based Photocatalysts in the Dyes Photodegradation

  • Corresponding author: Li Lihua, llh72@163.com
  • Received Date: 5 December 2018
    Accepted Date: 25 December 2018

Figures(9)

  • How to effectively remove the dyes from the waste water has been the popular direction of materials and environmental science. Compared with traditional adsorption and concentration filtration methods, the photocatalytic degradation has attracted more attention due to its unique environmental-friendly, conveniency, safety and without secondary pollution. In numerous catalysts, heteropoly acid (HPA) has great potential in photocatalytic applications due to its special 'cage' structure, tunable electronic properties, non-toxicity, oxygen-rich surface, cheapness and excellent redox properties, etc. In this paper, the research progress of polyoxometalate-based photocatalysts in recent years was introduced, and they can be classified into two major categories:modification and loading method, which were further subdivided into substitution HPAs, altered counterion HPA, organic and inorganic modification method, silicate loading method, titanium dioxide loading method and graphene loading method. The main improvement direction is to resolve their water solubility problem, broaden the light response range, increase their specific surface area and improve the recyclability. The synthesis conditions and catalytic mechanism of different catalyst systems were summarized and analyzed in detail, at the end, the future development trend is forecasted.
  • 加载中
    1. [1]

      R Abe. J. Photoch. Photobio. A, 2010, 11(4):179~209. 

    2. [2]

      H Salavati, N Tavakkoli, M Hosseinpoor. Ultrason. Sonochem., 2012, 19(3):546~553. 

    3. [3]

      A Popa, V Sasca, O Verdes et al. React. Kinet. Mech. Cat., 2015, 115(1):355~375. 

    4. [4]

      P Lei, C Chen, J Yang et al. Environ. Sci. Techol., 2005, 39(21):8466~8474. 

    5. [5]

      S Antonaraki, E Androulaki, D Dimotikali et al. J. Photoch. Photobio. A, 2002, 148(1):191~197. 

    6. [6]

      M A Rauf, S B Bukallah, A Hamadi et al. Chem. Eng. J., 2007, 129(1):167~172. 

    7. [7]

      T Yamase. Chem. Rev., 1998, 98(1):307~326. 

    8. [8]

      N Mahmoodi, M Arami, M Limaee et al. J. Colloid Interf. Sci., 2006, 295(1):159~164. 

    9. [9]

      G Marcì, E García-López, L Palmisano et al. Appl. Catal. B, 2009, 90(3):497~506. 

    10. [10]

      R R Ozer, J L Ferry. Environ. Sci. Technol., 2001, 35(15):3242~3248. 

    11. [11]

      C Hu, B Yue, T Yamase. Appl. Catal. A, 2000, 194(6):99~107. 

    12. [12]

      T Yamase. Catal. Surv. Asia, 2003, 7(4):203~217. 

    13. [13]

      A Yan, S Yao, Y Li et al. Chem. Eur. J., 2014, 20(23):6927~6933. 

    14. [14]

      Y Kim, S Shanmugam. ACS Appl. Mater. Interf., 2013, 5(22):12197~12204. 

    15. [15]

      R Bauer, H Fallmann. Res. Chem. Intermediat., 1997, 23(4):341~354. 

    16. [16]

      Y Hua, C Wang, J Liu et al. J. Mol. Catal. A, 2012, 365(4):8~14.

    17. [17]

      M Taghdiri, N Saadatjou, N Zamani et al. J. Hazard. Mater., 2013, 246~247(4):206~212. 

    18. [18]

      N Mirzaei, H R Ghaffari, K Sharafi et al. Chem. Eng. J., 2017, 5(4):3151~3160. 

    19. [19]

      Q Zhai, L Zhang, X Zhao et al. Appl. Surf. Sci., 2016, 377:17~22. 

    20. [20]

      B Fei, L Deng, J Wang et al. J. Hazard. Mater., 2017, 340:326~335. 

    21. [21]

      H Zhang, T Tong, W Cao et al. J. Sol-Gel Sci. Technol., 2015, 75(2):1~5.

    22. [22]

      G R Bertolini, V Vetere, M A Gallo et al. Compt. Rendus Chim., 2016, 19(10):1174~1183. 

    23. [23]

      H R Ghalebi, S Aber, A Karimi et al. J. Mol. Catal. A, 2016, 415:96~103. 

    24. [24]

      S Hocine, C Rabia, M Bettahar et al. React. Kinet. Mech. Cat., 2003, 79(2):357~364. 

    25. [25]

      A Selloni. Nat. Mater., 2008, 7(8):613~615. 

    26. [26]

      W Zhou, M Cao, S Su et al. J. Mol. Catal. A, 2013, 371(5):70~76.

    27. [27]

      T Li, Q Li, J Yan et al. Dalton Transac., 2014, 43(24):9061~9069. 

    28. [28]

      H Shi, T Zhang, T An et al. J. Colloid Interf. Sci., 2012, 380(1):121~127. 

    29. [29]

      A Olgun, A T Çolak, I·H Gübbük et al. J. Mol. Struct., 2017, 1134:78~84. 

    30. [30]

      K Lv, Y Xu. J. Phys. Chem. B, 2006, 110(12):6204~6212. 

    31. [31]

      W Wang, L Xu, G Gao et al. Inorg. Chem. Commun., 2009, 12(3):259~262. 

    32. [32]

      X Liu, J Luo, Y Zhu et al. J. Alloy Compd., 2015, 648:986~993. 

    33. [33]

      X Liu, W Gong, J Luo et al. Appl. Surf. Sci., 2016, 362:517~524. 

    34. [34]

      M Liu, X Yang, F Zhu et al. Dalton Transac., 2018, 47(15):5245~5251. 

    35. [35]

      X Fan, Y Guo, H Lv et al. Dalton Transac., 2018, 47(21):115~132.

    36. [36]

      A Balaska, E H Samar, A Grid et al. Desalin. Water Treat., 2015, 54(2):382~392. 

    37. [37]

      G Gao, F Li, L Xu et al. J. Am. Chem. Soc., 2008, 130(33):10838~10839. 

    38. [38]

      Y Gong, Y Guo, Q Hu et al. ACS Sustain. Chem. Eng., 2017, 5(5):4521~4530.

    39. [39]

      K Lv, Y Xu. J. Phys. Chem. B, 2006, 110(12):6204~6212. 

    40. [40]

      Y Zhou, G Chen, Z Long et al. RSC Adv., 2014, 4:42092~42113. 

    41. [41]

      S Farhadi, M Amini, F Mahmoudi et al. RSC Adv., 2016, 6(105):102984~102996. 

    42. [42]

      A Kubacka, M Fernandez-Garcia, G Colon. Chem. Rev., 2016, 112(3):1555~1614.

    43. [43]

      Y Hou, J Ma, T Wang et al. Mat. Sci. Semicon. Proc., 2015, 39:229~234. 

    44. [44]

      H Li, S Gao, M Cao et al. J. Colloid Interf. Sci., 2013, 394(1):434~440.

    45. [45]

      C Xue, J Xia, T Wang et al. Mater. Lett., 2014, 133:274~277. 

    46. [46]

      Q Wang, T Niu, D Jiao et al. New J. Chem., 2017, 41(11):1010~1039.

    47. [47]

      T Kyotani, T Nagai, A Sanjuro Inoue et al. Chem. Mater., 2014, 9(2):609~615. 

    48. [48]

      L Shi, T Wang, H Zhang et al. Adv. Sci., 2015, 2(3):150006~150014. 

    49. [49]

      H Park, W Cho. J. Phys. Chem. B, 2003, 107(16):3885~3890. 

    50. [50]

      N Dimitrijevic, M Savic, D Micic et al. Chem. Informat., 1984, 15(51):4278~4283. 

    51. [51]

      S Cong, Y Xu. J. Hazard. Mater., 2011, 192(2):485~489. 

    52. [52]

      S S Wang, G Y Yang. Chem. Rev., 2015, 115(11):4893~4901. 

    53. [53]

      R Contant, J P Ciabrini. Chem. Informat., 1977, 8(50):123~142.

    54. [54]

      J Kim, J Kim. Environ. Sci. Technol., 2014, 48(22):13384~13391. 

    55. [55]

      C Chen, P Lei, H Ji et al. Environ. Sci. Technol., 2004, 38:329~337. 

    56. [56]

      L Xu, X Yang, Y Guo et al. J. Hazard. Mater., 2010, 178(1/3):1070~1077.

    57. [57]

      H Shi, T Zhang, T An et al. J. Colloid Interf. Sci., 2012, 380(1):121~127. 

    58. [58]

      C H Liang, F B Li, C S Liu et al. Dyes Pigments, 2008, 76(2):477~484. 

    59. [59]

      J Thomas, S Radhika, M Yoon. Mol. Catal., 2017, 433:274~281. 

    60. [60]

      A Proust, B Matt, R Villanneau et al. Chem. Soc. Rev., 2012, 41(22):7605~7622. 

    61. [61]

      N Dubey, S S Rayalu, N K Labhsetwar et al. Appl. Catal. A, 2006, 303:152~157. 

    62. [62]

      R Chatti, S S Rayalu, N Dubey et al. Sol. Energ. Mater. Sol. Cell, 2007, 91(2):180~190.

    63. [63]

      C G Lin, J Hu, Y F Song. Adv. Inorg. Chem., 2017, 8(3):776~789.

    64. [64]

      S Nardecchia, D Carriazo, M L Ferrer et al. Chem. Soc. Rev., 2013, 42(2):794~830. 

    65. [65]

      T F Yeh, J M Syu, C Cheng et al. Adv. Funct. Mater., 2010, 20(14):2255~2262. 

    66. [66]

      S Nardecchia, D Carriazo, M Ferrer et al. Chem. Soc. Rev., 2013, 42(2):794~830. 

    67. [67]

      H Fakhri, A R Mahjoub, H Aghayan. Chem. Eng. Res. Des., 2017, 120:303~315. 

    68. [68]

      J Liu, Y Liu, N Liu et al. Science, 2015, 46(23):970~974.

    69. [69]

      Y Liu, F Luo, S Liu et al. Small, 2017, 13(14):160~174.

  • 加载中
    1. [1]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    2. [2]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    3. [3]

      Chao LiuHuan YuJiaming LiXi YuZhuangzhi YuYuxi SongFeng ZhangQinfang ZhangZhigang Zou . 具有光热效应的多级Ti3C2/Bi12O17Br2肖特基异质结简单合成及其太阳能驱动抗生素光降解的研究. Acta Physico-Chimica Sinica, 2025, 41(7): 100075-0. doi: 10.1016/j.actphy.2025.100075

    4. [4]

      Yichang Liu Li An Dan Qu Zaicheng Sun . “双碳”背景下的综合设计实验——以PbCrO4催化甲基蓝的光降解速率常数测定为例. University Chemistry, 2025, 40(6): 222-229. doi: 10.12461/PKU.DXHX202407105

    5. [5]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    6. [6]

      Huiwei DingBo PengZhihao WangQiaofeng Han . Advances in Metal or Nonmetal Modification of Bismuth-Based Photocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2305048-0. doi: 10.3866/PKU.WHXB202305048

    7. [7]

      Yushan CaiFang-Xing Xiao . Revisiting MXenes-based Photocatalysis Landscape: Progress, Challenges, and Future Perspectives. Acta Physico-Chimica Sinica, 2024, 40(8): 2306048-0. doi: 10.3866/PKU.WHXB202306048

    8. [8]

      Juntao YanLiang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-0. doi: 10.3866/PKU.WHXB202312024

    9. [9]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

    10. [10]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    11. [11]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    12. [12]

      Asif Hassan RazaShumail FarhanZhixian YuYan Wu . Double S-Scheme ZnS/ZnO/CdS Heterostructure Photocatalyst for Efficient Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-0. doi: 10.3866/PKU.WHXB202406020

    13. [13]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    14. [14]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    15. [15]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    16. [16]

      Wei ZhongDan ZhengYuanxin OuAiyun MengYaorong Su . Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-0. doi: 10.3866/PKU.WHXB202406005

    17. [17]

      Simin Fang Wei Huang Guanghua Yu Cong Wei Mingli Gao Guangshui Li Hongjun Tian Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023

    18. [18]

      Jingzhao ChengShiyu GaoBei ChengKai YangWang WangShaowen Cao . Construction of 4-Amino-1H-imidazole-5-carbonitrile Modified Carbon Nitride-Based Donor-Acceptor Photocatalyst for Efficient Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-0. doi: 10.3866/PKU.WHXB202406026

    19. [19]

      Xia ZHANGYushi BAIXi CHANGHan ZHANGHaoyu ZHANGLiman PENGShushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255

    20. [20]

      Yi YangXin ZhouMiaoli GuBei ChengZhen WuJianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064

Metrics
  • PDF Downloads(25)
  • Abstract views(2438)
  • HTML views(389)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return