Citation: MI Xing, HE Guang-xiang, GUO Xiao-yan, YANG Suo-he, LUO Guo-hua, XU Xin, JIN Hai-bo. Effect of reaction conditions on the hydrogenation of naphthalene to decalin over Ni/Al2O3 catalyst[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(7): 879-885. shu

Effect of reaction conditions on the hydrogenation of naphthalene to decalin over Ni/Al2O3 catalyst

  • Corresponding author: JIN Hai-bo, jinhaobo@bipt.edu.cn
  • Received Date: 27 November 2017
    Revised Date: 3 May 2018

    Fund Project: Construction of Innovative Teams and Teacher Career Development for Universities and Colleges under Beijing Municipality IDHT20180508the National Natural Science Foundation of China 91634101The project was supported by the National Natural Science Foundation of China (91634101) and Construction of Innovative Teams and Teacher Career Development for Universities and Colleges under Beijing Municipality (IDHT20180508)

Figures(8)

  • The effect of reaction conditions, including temperature, pressure, space velocity and hydrogen to oil ratio, on the hydrogenation of naphthalene to decalin over Ni/Al2O3 catalyst was investigated in a high pressure fixed bed reactor. The results indicate that the conversion of naphthalene and the selectivity to tran-decalin and cis-decalin are closely related to the reaction conditions. The ratio of tran-decalin to cis-decalin increases with an increase in the hydrogen to oil ratio and reaction temperature, but decreases with an increase in the liquid hourly space velocity (LHSV) and reaction pressure. Under a temperature 260-290℃, 5-7 MPa, a LHSV 1-1.5 h-1, and a hydrogen to oil ratio higher than 250, the conversion of naphthalene is 100% and the selectivity to decalin is close to 100%, with a tran-decalin to cis-decalin ratio of about 4.0. Meanwhile, it was found that the sintering and/or loss of active component are the main factors that cause the deactivation of Ni/Al2O3 catalyst in naphthalene hydrogenation and influence the ratio of tran-decalin to cis-decalin in the products.
  • 加载中
    1. [1]

      CHEN He-ping, BAO Cun-kuan. Progress of cleaner production technologies in chemical industry in China[J]. Chem Ind Eng Prog, 2013,32(6):1407-1414.  

    2. [2]

    3. [3]

      TONG Rui-li, WANG Yong-gang, ZHANG Xu, ZHANG Hai-yong, DAI Jin-ze, LIN Xiong-chao, XU De-ping. Effect of phosphorus modification on the catalytic properties of NiW/γ-Al2O3 in the hydrogenation of aromatics from coal tar[J]. J Fuel Chem Technol, 2015,43(12):1461-1469. doi: 10.3969/j.issn.0253-2409.2015.12.009 

    4. [4]

      ZHENG Xiu-xin, ZHAO Jia, SUN Guo-fang, GAO Peng, FEI Ya-nan, LIU You-peng, YU Hai-bin. Research progress in catalysts for the hydrogenation of naphthalene[J]. Chem Ind Eng Prog, 2015,34(5):1295-1299.  

    5. [5]

      HODOSHIMA S, ARAI H, TAKAIWA S, SAITO Y. Catalytic decalin dehydrogenation naphthalene hydrogenation pair as a hydrogen source for fuel-cell vehicle[J]. Inter J Hydrogen Energy, 2003,28(11):1255-1262. doi: 10.1016/S0360-3199(02)00250-1

    6. [6]

      PARK K, YIM D, IHM S. Characteristics of Al-MCM-41 supported Pt catalysts:Effect of Al distribution in Al-MCM-41 on its catalytic activity in naphthalene hydrogenation[J]. Catal Today, 2002,74(3/4):281-290.  

    7. [7]

      TAN Feng-yi. Synthesis of decalin by catalytic hydrogenation of naphthalene in fixed bed reactor[D]. Nanjing: Nanjing University of Technology, 2006. 

    8. [8]

      SONG Hui. Two-step catalytic hydrogenation of industrial naphthalene to decalin[D]. Dalian: Dalian University of Technology, 2015. 

    9. [9]

      HIYOSHI N, OSADA M, RODE C V, SATO O, SHIRAI M. Hydrogenation of benzothiophene-free naphthalene over charcoal-supported metal catalysts in supercritical carbon dioxide solvent[J]. Appl Catal, 2007,331:1-7. doi: 10.1016/j.apcata.2007.05.020

    10. [10]

      WEITKAMP A W. Stereochemistry and mechanism of hydrogenation of naphthalenes on transition metal catalysts and comformational analysis of the products[J]. Adv Synth Catal, 1968(18):1-110.  

    11. [11]

      SCHMITZ A D, BOWERS G, SONG C. Shape-selective hydrogenation of naphthalene over zeolite-supported Pt and Pd catalysts[J]. Catal Today, 1996,31(1/2):45-56.  

    12. [12]

      SAPRE A V, GATES B C. Hydrogenation of aromatic hydrocabrons catalyzed by sulfided cobalt monoxide-molybdenum trioxide/Y-aluminum oxide:Reactivities reaction newtokrs and kinetics[J]. J Am Chem Soc, 1979,25(l):66-77.  

    13. [13]

      RUATANEN P A, AITTAMAA J R, KRAUSE A O I. Liquid-phase hydrogenation of tetralin on Ni/Al2O3[J]. Chem Eng Sci, 2001,56:1247-1254. doi: 10.1016/S0009-2509(00)00346-8

    14. [14]

      RUATANEN P A, LYLYKANGAS M S, AITTAMAA J R. Liquid-phase hydrogenation of naphthalene and tertalin on Ni/Al2O3:Kinetic modeling[J]. Ind Eng Chem Res, 2002,41(24):5966-5975. doi: 10.1021/ie020395q

    15. [15]

      RUATANEN P A, LYLYKANGAS I, KRAUSE A O. Liquid-phase hydrogenation kinetics of multicomponent aromatic mixtures on Ni/Al2O3[J]. Ind Eng Chem Res, 2002,41:5632-5639. doi: 10.1021/ie0202930

    16. [16]

      DOKJAMPA S, RIRKSOMBOON T, OSUWAN S, JONGPATIWUT S, RESASCO D E. Comparative study of the hydrogenation of tetralin on supported Ni Pt and Pd catalysts[J]. Catal Today, 2007,123(4):218-223.  

    17. [17]

      SCHUCKER R. Chemial equilibria in condensed-ring systems & isomerization equilibria of cis-and trans-decalin[J]. J Chem Eng Data, 1981,26(3):239-241. doi: 10.1021/je00025a002

    18. [18]

      COSTA P D, LEMBERTON J L, POTVIN C, MANOLI J M, PEROT G, BREYSSE M, DJEGA-MARIADASSOU G. Tetralin hydrogenation catalyzed by MO2C/Al2O3 and WC/Al2O3 in the presence of H2S[J]. Catal Today, 2001,65:195-200. doi: 10.1016/S0920-5861(00)00593-9

    19. [19]

      OYAMA S T. Novel catalysts for advanced hydroprocessing:Transition metal phosphides[J]. J Catal, 2003,216(1/2):343-352.  

    20. [20]

      ROBINSON W R A M, VAN GESTEL J N M, KORÁNYI T I, ROBINSON W R A M, VAN GESTEL J N M, KORÁNYI T I, EIJSBOUTS S, VAN der KRAAN A M, VAN VEEN J A R, DE BEER V H J. Phosphorus promotion of Ni(Co)-containing Mo-free catalysts in quinoline hydrogenation[J]. J Catal, 1996,161(2):539-550. doi: 10.1006/jcat.1996.0216

    21. [21]

      DUTTA R E, SCHOBART H H. Hydrogenation/dehydrogenation of polycyclic aromatic hydrocarbons using ammonium tetrathiomolybdate as catalyst precursor[J]. Catal Today, 1996,31:65-77. doi: 10.1016/0920-5861(96)00084-3

    22. [22]

      FRYE C Q, WEITKAMP A W. Equilibrium hydrogenation of multi-ring aromatics[J]. J Chem Eng Data, 1969,14:372-376. doi: 10.1021/je60042a026

    23. [23]

      JU Xue-yan, ZHANG Yu-ying, HU Zhi-hai, WANG Li-xin, LI Da-dong. Hydrogenation saturation discipline of 1-methyl naphthalene over Ni-Mo catalyst[J]. Acta Pet Sin (Pet Process Sect), 2012,28(4):538-543.  

    24. [24]

      MORI S, HANWAA M. Hydrogenation catalyst: Japan, 51121495[P]. 1976-10-23.

    25. [25]

      CAO Zu-bin, QIU Jian-guo. Analysis of the themdynatics of tetralin hydrocracking reaction network[J]. J Fushun Petrol Inst, 1992,13(4):1-5.  

    26. [26]

      HUANG T C, KANG B C. Kinetic study of naphthalene hydrogenation over Pt/Al2O3 catalyst[J]. Ind Eng Chem Res, 1995,34(4):1140-1148. doi: 10.1021/ie00043a016

    27. [27]

      MI Xing, YANG Suo-he, HE Guang-xiang, LUO Guo-hua, XU Xin, JIN Hai-bo. Effects of preparation conditions for Ni/γ-Al2O3 catalyst on saturated hydrogenation of naphthalene[J]. Petrochem Technol, 2017,46(4):414-421.  

    28. [28]

      LIN H P, WONG S T, MOU C Y. Extensive void defects in mesoporous aluminosilicate MCM-41[J]. J Phy Chem B, 2000,104(38):8967-8975. doi: 10.1021/jp001569p

    29. [29]

      MARINO F, BARONETTI G, JOBBAGY M. Cu-Ni-K/γ-Al2O3 Supported catalysts reforming formation of hydrotalcite-type compounds as a result of metal-support interaction[J]. Appl Catal A:Gen, 2003,238(1):41-54. doi: 10.1016/S0926-860X(02)00113-8

    30. [30]

      OCAMPO F, LOUIS B, ROGER A C. Methanation of carbon dioxide over nickel-based Ce(0.72)Zr(0.28)O(2) mixed oxide catalysts prepared by sol-gel method[J]. Appl Catal A:Gen, 2009,369(1/2):90-96.  

    31. [31]

      MARINO F, BARONETTI G, JOBBAGY M. Cu-Ni-K/γ-Al2O3 supported catalysts reforming formation of hydrotalcite-type compounds as a result of metal-support interaction[J]. Appl Catal A:Gen, 2003,238(1):41-54. doi: 10.1016/S0926-860X(02)00113-8

  • 加载中
    1. [1]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    2. [2]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    3. [3]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    4. [4]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    5. [5]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    6. [6]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    7. [7]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004

    8. [8]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    9. [9]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    10. [10]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    11. [11]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    12. [12]

      Xiaogang Liu Mengyu Chen Yanyan Li Xiantao Ma . Experimental Reform in Applied Chemistry for Cultivating Innovative Competence: A Case Study of Catalytic Hydrogen Production from Liquid Formaldehyde Reforming at Room Temperature. University Chemistry, 2025, 40(7): 300-307. doi: 10.12461/PKU.DXHX202408007

    13. [13]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    14. [14]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    15. [15]

      Ran YuChen HuRuili GuoRuonan LiuLixing XiaCenyu YangJianglan Shui . Catalytic Effect of H3PW12O40 on Hydrogen Storage of MgH2. Acta Physico-Chimica Sinica, 2025, 41(1): 100001-0. doi: 10.3866/PKU.WHXB202308032

    16. [16]

      Wenjuan TanYong YeXiujuan SunBei LiuJiajia ZhouHailong LiaoXiulin WuRui DingEnhui LiuPing Gao . Building P-Poor Ni2P and P-Rich CoP3 Heterojunction Structure with Cation Vacancy for Enhanced Electrocatalytic Hydrazine and Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(6): 2306054-0. doi: 10.3866/PKU.WHXB202306054

    17. [17]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    18. [18]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

    19. [19]

      Wei ZhongDan ZhengYuanxin OuAiyun MengYaorong Su . Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-0. doi: 10.3866/PKU.WHXB202406005

    20. [20]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

Metrics
  • PDF Downloads(9)
  • Abstract views(1219)
  • HTML views(145)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return