Citation: MI Xing, HE Guang-xiang, GUO Xiao-yan, YANG Suo-he, LUO Guo-hua, XU Xin, JIN Hai-bo. Effect of reaction conditions on the hydrogenation of naphthalene to decalin over Ni/Al2O3 catalyst[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(7): 879-885. shu

Effect of reaction conditions on the hydrogenation of naphthalene to decalin over Ni/Al2O3 catalyst

  • Corresponding author: JIN Hai-bo, jinhaobo@bipt.edu.cn
  • Received Date: 27 November 2017
    Revised Date: 3 May 2018

    Fund Project: Construction of Innovative Teams and Teacher Career Development for Universities and Colleges under Beijing Municipality IDHT20180508the National Natural Science Foundation of China 91634101The project was supported by the National Natural Science Foundation of China (91634101) and Construction of Innovative Teams and Teacher Career Development for Universities and Colleges under Beijing Municipality (IDHT20180508)

Figures(8)

  • The effect of reaction conditions, including temperature, pressure, space velocity and hydrogen to oil ratio, on the hydrogenation of naphthalene to decalin over Ni/Al2O3 catalyst was investigated in a high pressure fixed bed reactor. The results indicate that the conversion of naphthalene and the selectivity to tran-decalin and cis-decalin are closely related to the reaction conditions. The ratio of tran-decalin to cis-decalin increases with an increase in the hydrogen to oil ratio and reaction temperature, but decreases with an increase in the liquid hourly space velocity (LHSV) and reaction pressure. Under a temperature 260-290℃, 5-7 MPa, a LHSV 1-1.5 h-1, and a hydrogen to oil ratio higher than 250, the conversion of naphthalene is 100% and the selectivity to decalin is close to 100%, with a tran-decalin to cis-decalin ratio of about 4.0. Meanwhile, it was found that the sintering and/or loss of active component are the main factors that cause the deactivation of Ni/Al2O3 catalyst in naphthalene hydrogenation and influence the ratio of tran-decalin to cis-decalin in the products.
  • 加载中
    1. [1]

      CHEN He-ping, BAO Cun-kuan. Progress of cleaner production technologies in chemical industry in China[J]. Chem Ind Eng Prog, 2013,32(6):1407-1414.  

    2. [2]

    3. [3]

      TONG Rui-li, WANG Yong-gang, ZHANG Xu, ZHANG Hai-yong, DAI Jin-ze, LIN Xiong-chao, XU De-ping. Effect of phosphorus modification on the catalytic properties of NiW/γ-Al2O3 in the hydrogenation of aromatics from coal tar[J]. J Fuel Chem Technol, 2015,43(12):1461-1469. doi: 10.3969/j.issn.0253-2409.2015.12.009 

    4. [4]

      ZHENG Xiu-xin, ZHAO Jia, SUN Guo-fang, GAO Peng, FEI Ya-nan, LIU You-peng, YU Hai-bin. Research progress in catalysts for the hydrogenation of naphthalene[J]. Chem Ind Eng Prog, 2015,34(5):1295-1299.  

    5. [5]

      HODOSHIMA S, ARAI H, TAKAIWA S, SAITO Y. Catalytic decalin dehydrogenation naphthalene hydrogenation pair as a hydrogen source for fuel-cell vehicle[J]. Inter J Hydrogen Energy, 2003,28(11):1255-1262. doi: 10.1016/S0360-3199(02)00250-1

    6. [6]

      PARK K, YIM D, IHM S. Characteristics of Al-MCM-41 supported Pt catalysts:Effect of Al distribution in Al-MCM-41 on its catalytic activity in naphthalene hydrogenation[J]. Catal Today, 2002,74(3/4):281-290.  

    7. [7]

      TAN Feng-yi. Synthesis of decalin by catalytic hydrogenation of naphthalene in fixed bed reactor[D]. Nanjing: Nanjing University of Technology, 2006. 

    8. [8]

      SONG Hui. Two-step catalytic hydrogenation of industrial naphthalene to decalin[D]. Dalian: Dalian University of Technology, 2015. 

    9. [9]

      HIYOSHI N, OSADA M, RODE C V, SATO O, SHIRAI M. Hydrogenation of benzothiophene-free naphthalene over charcoal-supported metal catalysts in supercritical carbon dioxide solvent[J]. Appl Catal, 2007,331:1-7. doi: 10.1016/j.apcata.2007.05.020

    10. [10]

      WEITKAMP A W. Stereochemistry and mechanism of hydrogenation of naphthalenes on transition metal catalysts and comformational analysis of the products[J]. Adv Synth Catal, 1968(18):1-110.  

    11. [11]

      SCHMITZ A D, BOWERS G, SONG C. Shape-selective hydrogenation of naphthalene over zeolite-supported Pt and Pd catalysts[J]. Catal Today, 1996,31(1/2):45-56.  

    12. [12]

      SAPRE A V, GATES B C. Hydrogenation of aromatic hydrocabrons catalyzed by sulfided cobalt monoxide-molybdenum trioxide/Y-aluminum oxide:Reactivities reaction newtokrs and kinetics[J]. J Am Chem Soc, 1979,25(l):66-77.  

    13. [13]

      RUATANEN P A, AITTAMAA J R, KRAUSE A O I. Liquid-phase hydrogenation of tetralin on Ni/Al2O3[J]. Chem Eng Sci, 2001,56:1247-1254. doi: 10.1016/S0009-2509(00)00346-8

    14. [14]

      RUATANEN P A, LYLYKANGAS M S, AITTAMAA J R. Liquid-phase hydrogenation of naphthalene and tertalin on Ni/Al2O3:Kinetic modeling[J]. Ind Eng Chem Res, 2002,41(24):5966-5975. doi: 10.1021/ie020395q

    15. [15]

      RUATANEN P A, LYLYKANGAS I, KRAUSE A O. Liquid-phase hydrogenation kinetics of multicomponent aromatic mixtures on Ni/Al2O3[J]. Ind Eng Chem Res, 2002,41:5632-5639. doi: 10.1021/ie0202930

    16. [16]

      DOKJAMPA S, RIRKSOMBOON T, OSUWAN S, JONGPATIWUT S, RESASCO D E. Comparative study of the hydrogenation of tetralin on supported Ni Pt and Pd catalysts[J]. Catal Today, 2007,123(4):218-223.  

    17. [17]

      SCHUCKER R. Chemial equilibria in condensed-ring systems & isomerization equilibria of cis-and trans-decalin[J]. J Chem Eng Data, 1981,26(3):239-241. doi: 10.1021/je00025a002

    18. [18]

      COSTA P D, LEMBERTON J L, POTVIN C, MANOLI J M, PEROT G, BREYSSE M, DJEGA-MARIADASSOU G. Tetralin hydrogenation catalyzed by MO2C/Al2O3 and WC/Al2O3 in the presence of H2S[J]. Catal Today, 2001,65:195-200. doi: 10.1016/S0920-5861(00)00593-9

    19. [19]

      OYAMA S T. Novel catalysts for advanced hydroprocessing:Transition metal phosphides[J]. J Catal, 2003,216(1/2):343-352.  

    20. [20]

      ROBINSON W R A M, VAN GESTEL J N M, KORÁNYI T I, ROBINSON W R A M, VAN GESTEL J N M, KORÁNYI T I, EIJSBOUTS S, VAN der KRAAN A M, VAN VEEN J A R, DE BEER V H J. Phosphorus promotion of Ni(Co)-containing Mo-free catalysts in quinoline hydrogenation[J]. J Catal, 1996,161(2):539-550. doi: 10.1006/jcat.1996.0216

    21. [21]

      DUTTA R E, SCHOBART H H. Hydrogenation/dehydrogenation of polycyclic aromatic hydrocarbons using ammonium tetrathiomolybdate as catalyst precursor[J]. Catal Today, 1996,31:65-77. doi: 10.1016/0920-5861(96)00084-3

    22. [22]

      FRYE C Q, WEITKAMP A W. Equilibrium hydrogenation of multi-ring aromatics[J]. J Chem Eng Data, 1969,14:372-376. doi: 10.1021/je60042a026

    23. [23]

      JU Xue-yan, ZHANG Yu-ying, HU Zhi-hai, WANG Li-xin, LI Da-dong. Hydrogenation saturation discipline of 1-methyl naphthalene over Ni-Mo catalyst[J]. Acta Pet Sin (Pet Process Sect), 2012,28(4):538-543.  

    24. [24]

      MORI S, HANWAA M. Hydrogenation catalyst: Japan, 51121495[P]. 1976-10-23.

    25. [25]

      CAO Zu-bin, QIU Jian-guo. Analysis of the themdynatics of tetralin hydrocracking reaction network[J]. J Fushun Petrol Inst, 1992,13(4):1-5.  

    26. [26]

      HUANG T C, KANG B C. Kinetic study of naphthalene hydrogenation over Pt/Al2O3 catalyst[J]. Ind Eng Chem Res, 1995,34(4):1140-1148. doi: 10.1021/ie00043a016

    27. [27]

      MI Xing, YANG Suo-he, HE Guang-xiang, LUO Guo-hua, XU Xin, JIN Hai-bo. Effects of preparation conditions for Ni/γ-Al2O3 catalyst on saturated hydrogenation of naphthalene[J]. Petrochem Technol, 2017,46(4):414-421.  

    28. [28]

      LIN H P, WONG S T, MOU C Y. Extensive void defects in mesoporous aluminosilicate MCM-41[J]. J Phy Chem B, 2000,104(38):8967-8975. doi: 10.1021/jp001569p

    29. [29]

      MARINO F, BARONETTI G, JOBBAGY M. Cu-Ni-K/γ-Al2O3 Supported catalysts reforming formation of hydrotalcite-type compounds as a result of metal-support interaction[J]. Appl Catal A:Gen, 2003,238(1):41-54. doi: 10.1016/S0926-860X(02)00113-8

    30. [30]

      OCAMPO F, LOUIS B, ROGER A C. Methanation of carbon dioxide over nickel-based Ce(0.72)Zr(0.28)O(2) mixed oxide catalysts prepared by sol-gel method[J]. Appl Catal A:Gen, 2009,369(1/2):90-96.  

    31. [31]

      MARINO F, BARONETTI G, JOBBAGY M. Cu-Ni-K/γ-Al2O3 supported catalysts reforming formation of hydrotalcite-type compounds as a result of metal-support interaction[J]. Appl Catal A:Gen, 2003,238(1):41-54. doi: 10.1016/S0926-860X(02)00113-8

  • 加载中
    1. [1]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    2. [2]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    3. [3]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    4. [4]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    5. [5]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    6. [6]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    7. [7]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    8. [8]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    9. [9]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    10. [10]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    11. [11]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    12. [12]

      Ran Yu Chen Hu Ruili Guo Ruonan Liu Lixing Xia Cenyu Yang Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032

    13. [13]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

    14. [14]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    15. [15]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    16. [16]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    17. [17]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    18. [18]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    19. [19]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    20. [20]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

Metrics
  • PDF Downloads(9)
  • Abstract views(1086)
  • HTML views(136)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return