Citation: YANG Shao-bo, SONG Guo-liang, SONG Wei-jian, QI Xiao-bin. Transformation and deposition characteristics of sodium in Zhundong high sodium coal under different reaction atmospheres[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(9): 1051-1058. shu

Transformation and deposition characteristics of sodium in Zhundong high sodium coal under different reaction atmospheres

  • Corresponding author: SONG Guo-liang, songgl@iet.cn
  • Received Date: 5 April 2016
    Revised Date: 31 May 2016

    Fund Project: the International Science & Technology Cooperation Program of China 2014DFG61680the Strategic Priority Research Program of the Chinese Academy of Sciences XDA07030100

Figures(8)

  • In order to obtain the influences of different reaction atmospheres on transformation and deposition characteristics of sodium in Zhundong high sodium coal for circulating fluidized bed technology, gasification (reducing atmosphere) and combustion (oxidizing atmosphere) experiments were carried out, respectively, at 950℃ for Xinjiang SEH high sodium coal in a 0.4 t/d circulating fluidized bed experimental apparatus. The results show that Na in fly ash and deposition ash exists mainly as NaCl. Na and Cl are easier to be reserved in bottom ash and fly ash during gasification comparing with combustion, and correspondingly less Na and Cl enter into gas phase. Part of NaCl is sulfurized by SO2 and more stable Na2SO4 is produced under combustion atmosphere and condenses on the surface of ash deposition probes. More fine particulates are produced during combustion and perform worse deposition problems. The corrosion of HCl to the metal wall exists in the process of SEH coals' combustion and gasification.
  • 加载中
    1. [1]

      ZHANG Hui. Visit the world's largest coal filed-Zhundong coal filed in Xinjiang[J]. Gas Sep, 2010(3):19-22.  

    2. [2]

      ZHANG Shou-yu, CHEN Chuan, SHI Da-zhong, LÜ Jun-fu, WANG Jian, GUO Xi, DONG Ai-xia, XIONG Shao-wu. Situation of combustion utilization of high sodium coal[J]. Proc CSEE, 2013,33(5):1-12.  

    3. [3]

      YU Qiang, ZHANG Jian-qiang. Effect of burning high-sodium coal on boiler heating surface[J]. Boiler Manuf, 2012(4):4-6.  

    4. [4]

      DONG Ming-gang. Influence of high-sodium coal upon slagging, contamination and corrosion on the heating surface of boilers[J]. Therm Power Gen, 2008,37(9):35-39.  

    5. [5]

      YANG Zhong-can, LIU Jia-li, HE Hong-guang. Study on properties of Zhundong coal in Xinjiang region and type-selection for boilers burning this coal sort[J]. Therm Power Gen, 2010,39(8):38-40.  

    6. [6]

      SHEN Wen-qin, XIONG Li-hong. Formation and removal of gaseous alkali metal of hot gas[J]. Gas Heat, 1998,18(6):3-5.  

    7. [7]

      WANG X, XU Z, WEI B, ZHANG L, TAN H, YANG T, MIKUL ČI ČH, DUI Ć N. The ash deposition mechanism in boilers burning Zhundong coal with high contents of sodium and calcium: A study from ash evaporating to condensing[J]. Appl Therm Eng, 2015,80:150-159. doi: 10.1016/j.applthermaleng.2015.01.051

    8. [8]

      SONG Wei-jian, SONG Guo-liang, ZHANG Hai-xia, FAN Jin-long, LÜ Qing-gang. Experimental study on alkali metal transformation during high-sodium Zhundong coal pyrolysis[J]. J Fuel Chem Technol, 2015,43(1):16-21.  

    9. [9]

      SONG Guo-liang, QI Xiao-bin, SONG Wei-jian, LÜ Qing-gang. Migration characteristics of alkali metals in Zhundong high-alkali coal from Xinjiang during fluidized gasification process[J]. Chin J Proc Eng, 2015,15(4):541-547.  

    10. [10]

      QI Xiao-bin, SONG Guo-liang, SONG Wei-jian, LÜ Qing-gan. Alkali metal migration and slagging characteristic during Zhundong high-alkali coal gasification[J]. J Fuel Chem Technol, 2015,43(8):906-913.  

    11. [11]

      LI W, WANG L, QIAO Y, LIN J Y, WANG M, CHANG L. Effect of atmosphere on the release behavior of alkali and alkaline earth metals during coal oxy-fuel combustion[J]. Fuel, 2015,139:164-170. doi: 10.1016/j.fuel.2014.08.056

    12. [12]

      WANG L, MAO H, WANG Z, LIN J Y, WANG M, CHANG L. Transformation of alkali and alkaline-earth metals during coal oxy-fuel combustion in the presence of SO2 and H2O[J]. J Energy Chem, 2015,24(4):381-387. doi: 10.1016/j.jechem.2015.07.006

    13. [13]

      ZHENG Z, WANG H, GUO S, LUO Y, DU Q, WU S. Fly ash deposition during oxy-fuel combustion in a bench-scale fluidized-bed combustor[J]. Energy Fuels, 2013,27(8):4609-4616. doi: 10.1021/ef400774b

    14. [14]

      WANG H, ZHENG Z M, YANG L, LIU X L, GUO S, WU S H. Experimental investigation on ash deposition of a bituminous coal during oxy-fuel combustion in a bench-scale fluidized bed[J]. Fuel Process Technol, 2015,132:24-30. doi: 10.1016/j.fuproc.2014.12.021

    15. [15]

      LIU Jing, WANG Zhi-hua, XIANG Fei-peng, HUANG Zhen-yu, LIU Jian-zhong, ZHOU Jun-hu, CEN Ke-fa. Modes of occurrence and transformation of alkali metals in Zhundong coal during combustion[J]. J Fuel Chem Technol, 2014,42(3):316-322.  

    16. [16]

      ZHANG Xiao-yu, ZHANG Hai-xia, NA Yong-jie. Migration characteristics and morphological change of sodium during ashing process of Zhundong coal[J]. Clean Coal Technol, 2015(2):45-50.  

    17. [17]

      HUANG Ji-wu. Polycrystalline Materials X-ray Diffraction (XRD)[M]. Beijing: Metallurgical Industry Press, 2012.

    18. [18]

      MANZOORI A R, AGARWAL P K. The role of inorganic matter in coal in the formation of agglomerates in circulating fluid bed combustors[J]. Fuel, 1993,72(7):1069-1075. doi: 10.1016/0016-2361(93)90310-X

    19. [19]

      BAXTER L, DESOLLAR R. Applications of Advanced Technology to Ash-Related Problems in Boilers[M]. NewYork: Springer Science & Business Media, 2013.

    20. [20]

      TOMECZEK J, PALUGNIOK H, OCHMAN J. Modelling of deposits formation on heating tubes in pulverized coal boilers[J]. Fuel, 2004,83(2):213-221. doi: 10.1016/S0016-2361(03)00219-9

    21. [21]

      SONG Wei-jian, SONG Guo-liang, QI Xiao-bin, LÜ Qing-gang. Effect of pretreatment methods on the determination of alkali metal content in high alkali metal Zhundong coal[J]. J Fuel Chem Technol, 2016,4(2):162-167.  

    22. [22]

      LI Wen, BAI Jin. The Chemistry of Coal Ash[M]. Beijing: Science Press, 2013.

    23. [23]

      KOSMINSKI A, ROSS D P, AGNEW J B. Reactions between sodium and kaolin during gasification of a low-rank coal[J]. Fuel Process Technol, 2006,87(12):1051-1062. doi: 10.1016/j.fuproc.2005.06.004

    24. [24]

      NIU Y, TAN H, HUI S. Ash-related issues during biomass combustion: Alkali-induced slagging, silicate melt-induced slagging (ash fusion), agglomeration, corrosion, ash utilization, and related countermeasures[J]. Prog Energ Combust, 2016,52:1-61. doi: 10.1016/j.pecs.2015.09.003

    25. [25]

      SONG Wei-jian, SONG Guo-liang, QI Xiao-bin, LÜ Qing-gang. Sodium transformation law of Zhundong coal during gasification[J]. J China Coal Soc, 2016,41(2):490-496.  

    26. [26]

      NIELSEN H P, FRANDSEN F J, DAM-JOHANSEN K, BAXTER L L. The implications of chlorine-associated corrosion on the operation of biomass-fired boilers[J]. Prog Energ Combust, 2000,26(3):283-298. doi: 10.1016/S0360-1285(00)00003-4

    27. [27]

      LI G, LI S, HUANG Q, YAO Q. Fine particulate formation and ash deposition during pulverized coal combustion of high-sodium lignite in a down-fired furnace[J]. Fuel, 2015,143:430-437. doi: 10.1016/j.fuel.2014.11.067

    28. [28]

      GAO Q, LI S, YUAN Y, ZHANG Y, YAO Q. Ultrafine particulate matter formation in the early stage of pulverized coal combustion of high-sodium lignite[J]. Fuel, 2015,158:224-231. doi: 10.1016/j.fuel.2015.05.028

    29. [29]

      ZHANG Yu-kui, ZHANG Hai-xia, ZHU Zhi-ping. Physical and chemical properties of fly ash from fluidized bed gasification of Zhundong coal[J]. J Fuel Chem Technol, 2016,44(3):305-313.  

  • 加载中
    1. [1]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    2. [2]

      Houzhen Xiao Mingyu Wang Yong Liu Bangsheng Lao Lingbin Lu Minghuai Yu . Course Ideological and Political Design of Combustion Heat Measurement Experiment. University Chemistry, 2024, 39(2): 7-13. doi: 10.3866/PKU.DXHX202310011

    3. [3]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

    4. [4]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    5. [5]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    6. [6]

      Shuyong Zhang Yaxian Zhu Wenqing Zhang Yuzhi Wang Jing Lu . Ideological and Political Design of Combustion Heat Measurement Experiment: Determination of Heat Value of Agricultural and Forestry Wastes. University Chemistry, 2024, 39(2): 1-6. doi: 10.3866/PKU.DXHX202303026

    7. [7]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    8. [8]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    9. [9]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    10. [10]

      Dongqi Cai Fuping Tian Zerui Zhao Yanjuan Zhang Yue Dai Feifei Huang Yu Wang . Exploration of Factors Influencing the Determination of Ion Migration Number by Hittorf Method. University Chemistry, 2024, 39(4): 94-99. doi: 10.3866/PKU.DXHX202310031

    11. [11]

      Jiayu Tang Jichuan Pang Shaohua Xiao Xinhua Xu Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021

    12. [12]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    13. [13]

      Shanying Chen Kangning Huo Ke Qi Jingyi Li Shuxin Li Yunchao Li . A Novel Colloid Electrophoresis Experiment with the Characteristics of Resource Recycling and Inquiry-Driven Experimental Design. University Chemistry, 2024, 39(5): 274-286. doi: 10.3866/PKU.DXHX202311067

    14. [14]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    15. [15]

      Jie WUZhihong LUOXiaoli CHENFangfang XIONGLi CHENBiao ZHANGBin SHIQuansheng OUYANGJiaojing SHAO . Critical roles of AlPO4 coating in enhancing cycling stability and rate capability of high voltage LiNi0.5Mn1.5O4 cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 948-958. doi: 10.11862/CJIC.20240400

    16. [16]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    17. [17]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    18. [18]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    19. [19]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    20. [20]

      Mingxin LULiyang ZHOUXiaoyu XUXiaoying FENGHui WANGBin YANJie XUChao CHENHui MEIFeng GAO . Preparation of La-doped lead-based piezoelectric ceramics with both high electrical strain and Curie temperature. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 329-338. doi: 10.11862/CJIC.20240206

Metrics
  • PDF Downloads(2)
  • Abstract views(1209)
  • HTML views(186)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return