Citation: Zhu Dongbo, Liu Huihui, Shao Xiang. AFM Characterizations of the Liquid-Phase Exfoliated Carbon Nitride on Various Substrates[J]. Chemistry, ;2017, 80(11): 1036-1042. shu

AFM Characterizations of the Liquid-Phase Exfoliated Carbon Nitride on Various Substrates

  • Corresponding author: Shao Xiang, shaox@ustc.edu.cn
  • Received Date: 14 May 2017
    Accepted Date: 12 June 2017

Figures(7)

  • Graphitic carbon nitride (g-C3N4) has provoked wide research interests in heterogeneous catalysis and photocatalysis, owing to its special layered structure and related electronic properties. In this work, the g-C3N4 powder was treated by ultrasonic bath in both isopropanol (IPA) and IPA-H2O solvents and then dispersed on various substrates including mica, HOPG and Au(111). With detailed atomic force microscopy (AFM) characterizations, It was found that after 10 hours of ultrasonic bathing, the g-C3N4 grains were exfoliated into planate particles as small as 100 nm and thin as 10 nm. However the expected g-C3N4 nanosheets were not formed. This is most likely due to the low crystallinity of the g-C3N4 powder produced by the thermal polymerization.
  • 加载中
    1. [1]

      M Xu, T Liang, M Shi et al. Chem. Rev., 2013, 113(5):3766~3798. 

    2. [2]

      C Tan, X Cao, X J Wu et al. Chem. Rev., 2017, 117(9):6225~6331. 

    3. [3]

      J N Coleman, M Lotya, A O'Neill et al. Science, 2011, 331(6017):568~571. 

    4. [4]

      V Nicolosi, M Chhowalla, M G Kanatzidis et al. Science, 2013, 340(6139):1226419. 

    5. [5]

      A K Geim, K S Novoselov. Nature Mater. 2007, 6:183~191. 

    6. [6]

      A Thomas, A Fischer, F Goettmann et al. J. Mater. Chem., 2008, 18:4893~4908. 

    7. [7]

      X Wang, K Maeda, A Thomas et al. Nature Mater., 2009, 8, 76~80.

    8. [8]

      W J Ong, L L Tan, Y H Ng et al. Chem. Rev., 2016, 116(12):7159~7329. 

    9. [9]

      S Cao, J Low, J Yu et al. Adv. Mater., 2015, 27, 2150~2176.

    10. [10]

      X Zhang, X Xie, H Wang et al. J. Am. Chem. Soc., 2013, 135(1):18~21. 

    11. [11]

      P Niu, L Zhang, G Liu et al. Adv. Funct. Mater., 2012, 22:4763~4770. 

    12. [12]

      G Gao, Y Jiao, E R Waclawik et al. J. Am. Chem. Soc., 2016, 138(19):6292~6297. 

    13. [13]

      Y Zheng, Y Jiao, Y Zhu et al. Nat. Commun., 2014, 5:3783. 

    14. [14]

      S Yang, Y Gong, J Zhang et al. Adv. Mater., 2013, 25:2452~2456. 

    15. [15]

      Y Chen, B Wang, S Lin et al. J. Phys. Chem. C, 2014, 118(51):29981~29989. 

    16. [16]

      Y Yin, J Han, X Zhang et al. RSC Adv., 2014, 4:32690~32697. 

    17. [17]

      Q Han, F Zhao, C Hu et al. Nano Res., 2015, 8(5):1718~1728. 

    18. [18]

      J Bian, Q Li, C Huang et al. Nano Energy, 2015, 15:353~361. 

    19. [19]

      Q Wang, W Wang, J Lei et al. Anal. Chem., 2013, 85(24):12182~12188. 

    20. [20]

      H Wang, Y Su, H Zhao et al. Environ. Sci. Technol., 2014, 48(20):11984~11990. 

    21. [21]

      W Ma, D Han, M Zhou et al. Chem. Sci., 2014, 5:3946~3951. 

    22. [22]

      Y Huang, Y Wang, Y Bi et al. RSC Adv., 2015, 5:33254~33261. 

    23. [23]

      X Chen, L Zhang, B Zhang et al. Sci. Reports, 2016, 6:28558. 

    24. [24]

      Y Shi, Z Long, B Yu et al. J. Mater. Chem. A, 2015, 3:17064~17073. 

    25. [25]

      Q Lin, L Li, S Liang et al. Appl. Catal. B, 2015, 163:135~142. 

    26. [26]

      S De, P J King, M Lotya et al. Small, 2010, 6(3):458~464. 

    27. [27]

      M Wu, J M Yan, X W Zhang et al. J. Mater. Chem. A, 2015, 3:15710~15714. 

    28. [28]

      Z Lin, X Wang. Angew. Chem. Int. Ed., 2013, 52:1735~1738. 

    29. [29]

      V W Lau, I Moudrakovski, T Botari et al. Nat. Commun., 2016, 7:12165. 

    30. [30]

      H Li, J Cao, W Zheng et al. J. Am. Chem. Soc., 2012, 134(14):6132~6135. 

    31. [31]

      J Tian, Q Liu, A M Asiri et al. Anal. Chem., 2013, 85(11):5595~5599. 

    32. [32]

      K Schwinghammer, M B Mesch, V Duppel et al. J. Am. Chem. Soc., 2014, 136(5):1730~1733. 

    33. [33]

      H Yang, S Y Fung, M Pritzker et al. PLoS One, 2(12):e1325. 

    34. [34]

      D Zhong, J H Franke, S K Podiyanachari et al. Science, 2011, 334(6053):213~216. 

    35. [35]

      L J Wan. Acc. Chem. Res., 2006, 39(5):334~342. 

  • 加载中
    1. [1]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    2. [2]

      Shiyang HeDandan ChuZhixin PangYuhang DuJiayi WangYuhong ChenYumeng SuJianhua QinXiangrong PanZhan ZhouJingguo LiLufang MaChaoliang Tan . Pt Single-Atom-Functionalized 2D Al-TCPP MOF Nanosheets for Enhanced Photodynamic Antimicrobial Therapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-0. doi: 10.1016/j.actphy.2025.100046

    3. [3]

      Mingyang MenJinghua WuGaozhan LiuJing ZhangNini ZhangXiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019

    4. [4]

      Yajie LiBin ChenYiping WangHui XingWei ZhaoGeng ZhangSiqi Shi . Inhibiting Dendrite Growth by Customizing Electrolyte or Separator to Achieve Anisotropic Lithium-Ion Transport: A Phase-Field Study. Acta Physico-Chimica Sinica, 2024, 40(3): 2305053-0. doi: 10.3866/PKU.WHXB202305053

    5. [5]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    6. [6]

      Gaoyan Chen Chaoyue Wang Juanjuan Gao Junke Wang Yingxiao Zong Kin Shing Chan . Heart to Heart: Exploring Cardiac CT. University Chemistry, 2024, 39(9): 146-150. doi: 10.12461/PKU.DXHX202402011

    7. [7]

      Huanhuan XIEYingnan SONGLei LI . Two-dimensional single-layer BiOI nanosheets: Lattice thermal conductivity and phonon transport mechanism. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 702-708. doi: 10.11862/CJIC.20240281

    8. [8]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    9. [9]

      Chunling QinShuang ChenHassanien GomaaMohamed A. ShenashenSherif A. El-SaftyQian LiuCuihua AnXijun LiuQibo DengNing Hu . Regulating HER and OER Performances of 2D Materials by the External Physical Fields. Acta Physico-Chimica Sinica, 2024, 40(9): 2307059-0. doi: 10.3866/PKU.WHXB202307059

    10. [10]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    11. [11]

      Fanpeng MengFei ZhaoJingkai LinJinsheng ZhaoHuayang ZhangShaobin Wang . Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-0. doi: 10.1016/j.actphy.2025.100095

    12. [12]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    13. [13]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    14. [14]

      Huayan LiuYifei ChenMengzhao YangJiajun Gu . Strategies for enhancing capacity and rate performance of two-dimensional material-based supercapacitors. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-0. doi: 10.1016/j.actphy.2025.100063

    15. [15]

      Runhua ChenQiong WuJingchen LuoXiaolong ZuShan ZhuYongfu Sun . Defective Ultrathin Two-Dimensional Materials for Photo-/Electrocatalytic CO2 Reduction: Fundamentals and Perspectives. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-0. doi: 10.3866/PKU.WHXB202308052

    16. [16]

      Anbang DuYuanfan WangZhihong WeiDongxu ZhangLi LiWeiqing YangQianlu SunLili ZhaoWeigao XuYuxi Tian . Photothermal Microscopy of Graphene Flakes with Different Thicknesses. Acta Physico-Chimica Sinica, 2024, 40(5): 2304027-0. doi: 10.3866/PKU.WHXB202304027

    17. [17]

      Lijun Yue Siya Liu Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005

    18. [18]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    19. [19]

      Haiyang Zhang Yanzhao Dong Haojie Li Ruili Guo Zhicheng Zhang Jiangjiexing Wu . Exploring the Integration of Chemical Engineering Principle Experiment with Cutting-Edge Research Achievements. University Chemistry, 2024, 39(10): 308-313. doi: 10.12461/PKU.DXHX202405035

    20. [20]

      Runjie Li Hang Liu Xisheng Wang Wanqun Zhang Wanqun Hu Kaiping Yang Qiang Zhou Si Liu Pingping Zhu Wei Shao . 氨基酸的衍生及手性气相色谱分离创新实验. University Chemistry, 2025, 40(6): 286-295. doi: 10.12461/PKU.DXHX202407059

Metrics
  • PDF Downloads(34)
  • Abstract views(3911)
  • HTML views(901)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return