Citation: WANG Xu-feng, LIU Jing, LIU Feng. Thermodynamic analysis and experimental studies on chemical looping gasification of biomass with CoFe2O4 as oxygen carrier[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(3): 306-311. shu

Thermodynamic analysis and experimental studies on chemical looping gasification of biomass with CoFe2O4 as oxygen carrier

  • Corresponding author: LIU Jing, liujing27@mail.hust.edu.cn
  • Received Date: 9 November 2018
    Revised Date: 8 January 2019

    Fund Project: National Natural Science Foundation of China 51661145010The project was supported by National Natural Science Foundation of China (51661145010)

Figures(5)

  • The reactivity of biomass with CoFe2O4 oxygen carrier was investigated through thermodynamic analysis. The effects including amount of oxygen carrier, temperature and steam content on gasification characteristics of biomass were examined. Meanwhile, the reaction was experimentally investigated using thermogravimetric analysis. The phase of fresh and reacted oxygen carrier was characterized by X-ray diffraction (XRD).Thermodynamic analysis results show that CoFe2O4 can provide lattice oxygen and effectively improve gasification of biomass and carbon conversion efficiency. As the temperature goes up, amount of H2 and CO increases, while CO2 decreases. With amount of steam increases, H2 and CO2 yield increases while CO yield decreases. The ratio of H2 to CO increases and high quality syngas can be obtained with the addition of steam. Thermogravimetric analysis and XRD results show that cobalt can be first reduced which can promote the further reduction of iron due to the synergistic effect. With the amount of oxygen carrier increases, reduction degree of oxygen carrier decreases. The optimal mass ratio of oxygen carrier to biomass is 0.8.
  • 加载中
    1. [1]

      YUAN Jing-zhu, ZHU Tong. Overview of biomass energy utilization technology and policy research[J]. Energy China, 2018,40(6):16-20.  

    2. [2]

      WEI Guo-qiang, HE Fang, ZHAO Zeng-li, ZHAO Wei-na, HUANG Zhen, ZHENG An-qing, ZHAO kun, FENG Yi-peng, LI Hai-bin. Chemical looping gasification of biomass based on the oxygen carrier derived from the layered double hydroxide (LDH) precursor[J]. J Fuel Chem Technol, 2016,44(3):349-356. doi: 10.3969/j.issn.0253-2409.2016.03.013 

    3. [3]

      HUANG Z, HE F, FENG Y P, ZHAO K, ZHENG A, CHANG S, LI H B. Synthesis gas production through biomass direct chemical looping conversion with natural hematite as an oxygen carrier[J]. Bioresour Technol, 2013,140(140C):138-145.  

    4. [4]

      HUANG Zhen, HE Fang, LI Xin-ai, ZHAO Kun, LI Hai-bin. Thermodynamic analysis and experimental study on biomass chemical looping gasification with iron-based oxygen carrier[J]. Acta Energ Sol Sin, 2013,34(11):1943-1949. doi: 10.3969/j.issn.0254-0096.2013.11.014

    5. [5]

      DAI Jin-xin, LIU Jing, LIU Feng. Influence mechanism of H2S on reactivity of NiFe2O4 oxygen carriers for chemical looping combustion[J]. CIESC J, 2017,68(3):1163-1169.  

    6. [6]

      XU L, SCHWEBEL G L, KNUTSSON P, LEION H, LI Z S, CAI N S. Performance of industrial residues as low cost oxygen carriers[J]. Energy Procedia, 2017,114:361-370. doi: 10.1016/j.egypro.2017.03.1178

    7. [7]

      WANG M J, LIU J, SHEN F H, CHENG H, DAI J X, LONG Y. Theoretical study of stability and reaction mechanism of CuO supported on ZrO2 during chemical looping combustion[J]. Appl Surf Sci, 2016,367:485-492. doi: 10.1016/j.apsusc.2016.01.240

    8. [8]

      SONG Yang-bo, XU Shao-ping, LI Ling-li, XIAO Ya-hui. Chemical looping gasification of coal char with Cu-olivine oxygen carriers[J]. J Fuel Chem Technol, 2017,45(8):916-923. doi: 10.3969/j.issn.0253-2409.2017.08.003 

    9. [9]

      LIU F, LIU J, YANG Y J, WANG X F. A mechanistic study of CO oxidation over spinel MnFe2O4 surface during chemical-looping combustion[J]. Fuel, 2018,230:410-417. doi: 10.1016/j.fuel.2018.05.079

    10. [10]

      SONG Q L, XIAO R, DENG Z Y, SHEN L H, XIAO J, ZHANG M Y. Effect of temperature on reduction of CaSO4 oxygen carrier in chemical looping combustion of simulated coal gas in a fluidized bed reactor[J]. Ind Eng Chem Res, 2008,47(21):8148-8159. doi: 10.1021/ie8007264

    11. [11]

      RYDENA M, LYNGFELTA A, MATTISSONA T, CHEN De, HOLMENB A, BJRGUMC E. Novel oxygen-carrier materials for chemical-looping combustion and chemical-looping reforming; LaxSr1-xFeyCo1-yO3-δ perovskites and mixed-metal oxides of NiO, Fe2O3 and Mn3O4[J]. Int J Greenhouse Gas Control, 2008,2(1):21-36. doi: 10.1016/S1750-5836(07)00107-7

    12. [12]

      CHENG Yu, LIU Yong-zhuo, TIAN Hong-jing, GUO Qing-jie. Characteristics and mechanism of coal chemical looping gasification with iron-based oxygen carrier[J]. CIESC J, 2013,64(7):2587-2595. doi: 10.3969/j.issn.0438-1157.2013.07.038

    13. [13]

      DERAZ N M. Glycine-assisted fabrication of nanocrystalline cobalt ferrite system[J]. J Anal Appl Pyrolysis, 2010,88(2):103-109. doi: 10.1016/j.jaap.2010.03.002

    14. [14]

      WANG B W, GAO C C, WANG W S, KONG F H, ZHENG C G. TGA-FTIR investigation of chemical looping combustion by coal with CoFe2O4 combined oxygen carrier[J]. J Anal Appl Pyrolysis, 2014,105(2):369-378.  

    15. [15]

      LAURA S. Enhancement of redox properties of iron oxide through metal modification in catalyst assisted chemical looping[D]. Ghent: Ghent University, 2016.

    16. [16]

      ZHANG Yun-peng, LIU Yong-zhuo, YANG Qin-qin, GUO Qing-jie. Reaction characteristics of chemical-looping gasification for waste coffee grounds[J]. CIESC J, 2016,67(4):1303-1312.  

    17. [17]

      GUO Wan-jun, ZHANG Hai-feng, GE Hui-jun, SHEN Lai-hong. Study of mechanism on biomass chemical looping gasification with iron ore as oxygen carrier[J]. J Therm Sci Technol, 2016(3):249-258.  

    18. [18]

      WANG X, CHEN Z H, HU M, TIAN Y F, JIN X Y, MA S, XU T T, HU Z Q, LIU S M, GUO D B, XIAO B. Chemical looping combustion of biomass using metal ferrites as oxygen carriers[J]. Chem Eng J, 2017,312:252-262. doi: 10.1016/j.cej.2016.11.143

    19. [19]

      HUANG Zhen, LIU Shuai, LI De-bo, ZHAN Zhi-gang, HE Fang, LI Hai-bin. Thermodynamic investigation on biomass chemical looping gasification with Fe2O3 oxygen carrier[J]. Acta Energ Sol Sin, 2017,38(5):1421-1430.  

    20. [20]

      WANG K, YU Q B, QIN Q, HOU L M, DUAN W J. Thermodynamic analysis of syngas generation from biomass using chemical looping gasification method[J]. Int J Hydrogen Energy, 2015,41(24):10346-10353.  

    21. [21]

      XIAO Rui-rui, CHEN Xue-li, WANG Fu-chen, YU Guang-suo. Research on kinetics characteristics of gasification biomass semi-char with CO2[J]. Acta Energ Sol Sin, 2012,33(2):236-242. doi: 10.3969/j.issn.0254-0096.2012.02.011

    22. [22]

      SCHEFFE J, ALLENDORF M, COKER E, BENJAMIN J. Hydrogen production via chemical looping redox cycles using atomic layer deposition-synthesized iron oxide and cobalt ferrites[J]. Chem Mater, 2011,23(8):2030-2038. doi: 10.1021/cm103622e

    23. [23]

      DAI Jin-xin. Reaction mechanism between spinel ferrites and CO or H2S based on density functional theory[D]. Wuhan: Huazhong University of Science and Technology, 2017.

    24. [24]

      HUANG Z, DENG Z B, HE F, CHEN D Z, WEI G Q, ZHAO K, ZHENG A Q, ZHAO Z L, LI H B. Reactivity investigation on chemical looping gasification of biomass char using nickel ferrite oxygen carrier[J]. Int J Hydrogen Energy, 2017,42(21):14458-14470. doi: 10.1016/j.ijhydene.2017.04.246

    25. [25]

      HUANG Z, HE F, FENG Y P, ZHAO K, ZHENG A Q, CHANG S, WEI G Q, ZHAO Z L, LI H B. Biomass char direct chemical looping gasification using NiO-modified iron ore as an oxygen carrier[J]. Energy Fuels, 2013,28(1):183-191.  

  • 加载中
    1. [1]

      Zhonghan Xu Yuejia Li Kin Shing Chan . 碳中和新旅程. University Chemistry, 2025, 40(6): 167-171. doi: 10.12461/PKU.DXHX202407075

    2. [2]

      Qianqian ZHULihui XUHong PANChengjian YAOHong ZHAONan MAXiaolin SHIZihan SHENWeijun ZHANGZhongjian WANG . Waste cotton fabric-ased porous carbon materials: Preparation and wave-absorbing properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1555-1564. doi: 10.11862/CJIC.20250040

    3. [3]

      Chunguang Rong Miaojun Xu Xingde Xiang Song Liu . 化学热力学熵变计算的教学探讨. University Chemistry, 2025, 40(8): 323-329. doi: 10.12461/PKU.DXHX202409146

    4. [4]

      Tongqi Ye Yanqing Wang Qi Wang Huaiping Cong Xianghua Kong Yuewen Ye . Reform of Classical Thermodynamics Curriculum from the Perspective of Computational Chemistry. University Chemistry, 2025, 40(7): 387-392. doi: 10.12461/PKU.DXHX202409128

    5. [5]

      Zhuomin Zhang Lanrui Yang Baorong Zhang Gongke Li . 化学分析全英课程思政建设初探. University Chemistry, 2025, 40(8): 58-65. doi: 10.12461/PKU.DXHX202410010

    6. [6]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    7. [7]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    8. [8]

      Sheng Zhang Mingyu Wang Xiaohong Wang Jiancheng Feng . Multidimensional Teaching Design and Ideological and Political Exploration of Analytical Chemistry Experiment under the Complete Credit System. University Chemistry, 2024, 39(2): 189-195. doi: 10.3866/PKU.DXHX202307071

    9. [9]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    10. [10]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

    11. [11]

      Weigang Zhu Xiaofei Ma Yun Tian Huaji Liu Fanli Lu Yalu Ma . 基于知识图谱的“无机化学与化学分析”课程信息化教学资源构建与应用研究. University Chemistry, 2025, 40(6): 9-15. doi: 10.12461/PKU.DXHX202408113

    12. [12]

      Tingting Jiang Jing Chang . Application of Ideological and Political Education in Chemical Analysis Experiment under the Background of Emerging Engineering Education: Taking the Redox Titration Experiment as an Example. University Chemistry, 2024, 39(2): 168-174. doi: 10.3866/PKU.DXHX202308007

    13. [13]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    14. [14]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

    15. [15]

      Jianchun Wang Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082

    16. [16]

      Lu ZhuoranLi ShengkaiLu YuxuanWang ShuangyinZou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003

    17. [17]

      Xiaohui Li Ze Zhang Jingyi Cui Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027

    18. [18]

      Yang ZHOULili YANWenjuan ZHANGPinhua RAO . Thermal regeneration of biogas residue biochar and the ammonia nitrogen adsorption properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1574-1588. doi: 10.11862/CJIC.20250032

    19. [19]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    20. [20]

      Xinlong XUChunxue JINGYuzhen CHEN . Bimetallic MOF-74 and derivatives: Fabrication and efficient electrocatalytic biomass conversion. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1545-1554. doi: 10.11862/CJIC.20250046

Metrics
  • PDF Downloads(8)
  • Abstract views(987)
  • HTML views(159)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return