Citation: YAN Lun-jing, KONG Xiao-jun, BAI Yong-hui, XIE Ke-chang, LI Fan. Catalytic upgrading of gaseous tar from coal pyrolysis over Mo and Ni-modified HZSM-5[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(1): 30-36. shu

Catalytic upgrading of gaseous tar from coal pyrolysis over Mo and Ni-modified HZSM-5

  • Corresponding author: LI Fan, fanli@tyut.edu.cn
  • Received Date: 13 July 2015
    Revised Date: 8 October 2015

    Fund Project: Shanxi Provincial Education Department 2015BY18The project was supported by the National Natural Science Foundation of China 21376160

Figures(9)

  • The distributions of light aromatic hydrocarbons in the gaseous tar were investigated upon upgrading over Mo and Ni-modified HZSM-5 catalysts during coal pyrolysis. The results show that the yield of light aromatic hydrocarbon from lignite (XM) pyrolysis is increased by 220% after the cracking of gaseous tar over HZSM-5 zeolite, due to the aromatization of olefins or alkanes and the dehydroxylation of phenols. The loading of Mo and Ni on HZSM-5 is able to enhance the formation of light aromatic hydrocarbons; Ni can obviously promote the side chain cracking, whereas Mo is more effective for the formation of aromatic compounds with side chains such as toluene and xylene. Without catalysts, the yield of light aromatic hydrocarbons from coking coal (FX) pyrolysis is about 2.2 and 2.4 times higher than that from XM and bituminous coal (PS) pyrolysis, respectively. By using catalysts, however, the yield of light aromatic hydrocarbons from XM pyrolysis is obviously higher than that from PS pyrolysis and close to that from FX pyrolysis, as XM is provided with abundant oxygen containing functional group and aliphatic structure that can be transformed to light aromatic hydrocarbons over the HZSM-5 catalysts.
  • 加载中
    1. [1]

      SONOYAMA N, NOBUTA K, KIMURA T, HOSOKAI S, HAYASHI J-I, TAGO T, MASUDA T. Production of chemicals by cracking pyrolytic tar from Loy Yang coal over iron oxide catalysts in a steam atmosphere[J]. Fuel Process Technol, 2011,92(4):771-775. doi: 10.1016/j.fuproc.2010.09.036

    2. [2]

      ZHANG Hai-yong, WANG Yong-gang, ZHANG Pei-zhong, LIN Xiong-chao, ZHU Yu-fei. Preparation of NiW catalysts with alumina and zeolite Y for hydroprocessing of coal ta[J]. J Fuel Chem Technol, 2013, 41(9): 1085-1091. 

    3. [3]

      SEITZ M, HESCHEL W, NAGLER T, NOWAK S, ZIMMERMANN J, STAM-CREUTZ T. Influence of catalysts on the pyrolysis of lignites[J]. Fuel, 2014,134(0):669-676.  

    4. [4]

      LIU G, WRIGHT MM, ZHAO Q, BROWN RC. Catalytic fast pyrolysis of duckweed: Effects of pyrolysis parameters and optimization of aromatic production[J]. J Anal Appl Pyrolysis, 2015,112(0):29-36.  

    5. [5]

      CHAREONPANICH M, BOONFUENG T, LIMTRAKUL J. Production of aromatic hydrocarbons from Mae-Moh lignite[J]. Fuel Process Technol, 2002,79(2):171-179. doi: 10.1016/S0378-3820(02)00111-X

    6. [6]

      CHAREONPANICH M, TAKEDA T, YAMASHITA H, TOMITA A. Catalytic hydrocracking reaction of nascent coal volatile matter under high pressure[J]. Fuels, 1994,73(5):666-670. doi: 10.1016/0016-2361(94)90006-X

    7. [7]

      CHAREONPANICH M, ZHANG Z G, NISHIJIMA A, TOMITA A. Effect of catalysts on yields of monocyclic aromatic hydrocarbons in hydrocracking of coal volatile matter[J]. Fuels, 1995,74(11):1636-1640. doi: 10.1016/0016-2361(95)00147-W

    8. [8]

      TAKARADA T, ONOYAMA Y, TAKAYAMA K, SAKASHITA T. Hydropyrolysis of coal in a pressurized powder-particle fluidized bed using several catalysts[J]. Catal Today, 1997(39):127-136.  

    9. [9]

      NELSON P F, TYLER R J. Catalytic reactions of products from the rapid hydropyrolysis of coal at atmospheric pressure[J]. Energy Fuels, 1989(3):488-494.  

    10. [10]

      LI L, MORISHITA K, TAKARADA T. Light fuel gas production from nascent coal volatiles using a natural limonite ore[J]. Fuels, 2007,86(10/11):1570-1576.  

    11. [11]

      WANG Xin-dong, HAN Jiang-ze, LU Jiang-yin, GAO Shi-qiu, XU Guang-wen. Catalytic cracking of coal pyrolysis product for oil and gas upgrading over char-based catalysts[J]. CIESC J, 2012(12):3897-3905.  

    12. [12]

      WANG F J, ZHANG S, CHEN Z D, LIU C, WANG Y G. Tar reforming using char as catalyst during pyrolysis and gasification of Shengli brown coal[J]. J Anal Appl Pyrolysis, 2014,105(0):269-275.  

    13. [13]

      FAN Y, CAI Y, LI X, YU N, YIN H. Catalytic upgrading of pyrolytic vapors from the vacuum pyrolysis of rape straw over nanocrystalline HZSM-5 zeolite in a two-stage fixed-bed reactor[J]. J Anal Appl Pyrolysis, 2014,108(0):185-195.  

    14. [14]

      BEN H, RAGAUSKAS A J. Influence of Si/Al Ratio of ZSM-5 zeolite on the properties of lignin pyrolysis products[J]. Acs Sustainable Chem Eng, 2013,1(3):316-324. doi: 10.1021/sc300074n

    15. [15]

      FOSTER A J, JAE J, CHENG Y T, HUBER G W, LOBO R F. Optimizing the aromatic yield and distribution from catalytic fast pyrolysis of biomass over ZSM-5[J]. Appl Catal A: Gen, 2012,423-424(0):154-161.  

    16. [16]

      BAKAR M S A, TITILOYE J O. Catalytic pyrolysis of rice husk for bio-oil production[J]. J Anal Appl Pyrolysis, 2013,103(0):362-368.  

    17. [17]

      HUBER G W, CORMA A. Synergies between Bio-and Oil refineries for the production of fuels from biomass[J]. Angew Chem Int Ed, 2007,46(38):7184-7201. doi: 10.1002/(ISSN)1521-3773

    18. [18]

      THANGALAZHY-GOPAKUMAR S, ADHIKARI S, CHATTANATHAN S A, GUPTA R B. Catalytic pyrolysis of green algae for hydrocarbon production using H+ZSM-5 catalyst[J]. Bioresour Technol, 2012,118(0):150-157.  

    19. [19]

      ZHANG M, RESENDE F L P, MOUTSOGLOU A. Catalytic fast pyrolysis of aspen lignin via Py-GC/MS[J]. Fuels, 2014,116(0):358-369.  

    20. [20]

      ZHANG M, MOUTSOGLOU A. Catalytic fast pyrolysis of prairie cordgrass lignin and quantification of products by pyrolysis-gas chromatography-mass spectrometry[J]. Energy Fuels, 2014,28(2):1066-1073. doi: 10.1021/ef401795z

    21. [21]

      VALLE B, GAYUBO A G, AGUAYO A S T, OLAZAR M, BILBAO J. Selective production of aromatics by crude bio-oil valorization with a Nickel-modified HZSM-5 zeolite catalyst[J]. Energy Fuels, 2010,24:2060-2070.  

    22. [22]

      VALLE B, CASTABO P, OLAZAR M, BILBAO J, GAYUBO AG. Deactivating species in the transformation of crude bio-oil with methanol into hydrocarbons on a HZSM-5 catalyst[J]. J Catal, 2012,285:304-314. doi: 10.1016/j.jcat.2011.10.004

  • 加载中
    1. [1]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    2. [2]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    3. [3]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    4. [4]

      Jiarui Wu Gengxin Wu Yan Wang Yingwei Yang . Crystal Engineering Based on Leaning Towerarenes. University Chemistry, 2024, 39(3): 58-62. doi: 10.3866/PKU.DXHX202304014

    5. [5]

      Yongqing XuYuyao YangMengna WuXiaoxiao YangXuan BieShiyu ZhangQinghai LiYanguo ZhangChenwei ZhangRobert E. PrzekopBogna SztorchDariusz BrzakalskiHui Zhou . Review on Using Molybdenum Carbides for the Thermal Catalysis of CO2 Hydrogenation to Produce High-Value-Added Chemicals and Fuels. Acta Physico-Chimica Sinica, 2024, 40(4): 2304003-0. doi: 10.3866/PKU.WHXB202304003

    6. [6]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    7. [7]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    8. [8]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    9. [9]

      Kexin YanZhaoqi YeLingtao KongHe LiXue YangYahong ZhangHongbin ZhangYi Tang . Seed-Induced Synthesis of Disc-Cluster Zeolite L Mesocrystals with Ultrashort c-Axis: Morphology Control, Decoupled Mechanism, and Enhanced Adsorption. Acta Physico-Chimica Sinica, 2024, 40(9): 2308019-0. doi: 10.3866/PKU.WHXB202308019

    10. [10]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    11. [11]

      Yang ZHOULili YANWenjuan ZHANGPinhua RAO . Thermal regeneration of biogas residue biochar and the ammonia nitrogen adsorption properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1574-1588. doi: 10.11862/CJIC.20250032

    12. [12]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    13. [13]

      Yuting BaiCenqi YanZhen LiJiaqiang QinPei Cheng . Preparation of High-Strength Polyimide Porous Films with Thermally Closed Pore Property by In Situ Pore Formation Method. Acta Physico-Chimica Sinica, 2024, 40(9): 2306010-0. doi: 10.3866/PKU.WHXB202306010

    14. [14]

      Hanmei LüXin ChenQifu SunNing ZhaoXiangxin Guo . Uniform Garnet Nanoparticle Dispersion in Composite Polymer Electrolytes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305016-0. doi: 10.3866/PKU.WHXB202305016

    15. [15]

      Xianyong Lu Tao Hu . Developing an Innovative Inorganic Chemistry Teaching Model Based on Aerospace Specialty Characteristics. University Chemistry, 2025, 40(7): 127-131. doi: 10.12461/PKU.DXHX202409037

    16. [16]

      Xinran Zhang Siqi Liu Yichi Chen Qingli Zou Qinghong Xu Yaqin Huang . From Protein to Energy Storage Materials: Edible Gelatin Jelly Electrolyte. University Chemistry, 2025, 40(7): 255-266. doi: 10.12461/PKU.DXHX202408104

    17. [17]

      Jiandong LiuZhijia ZhangKamenskii MikhailVolkov FilippEliseeva SvetlanaJianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 2308048-0. doi: 10.3866/PKU.WHXB202308048

    18. [18]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    19. [19]

      Changsheng AnTao Liu . Decoding SEI chemistry at the lithium-metal potential. Acta Physico-Chimica Sinica, 2025, 41(9): 100101-0. doi: 10.1016/j.actphy.2025.100101

    20. [20]

      Zhi DouHuiyu DuanYixi LinYinghui XiaMingbo ZhengZhenming Xu . High-Throughput Screening Lithium Alloy Phases and Investigation of Ion Transport for Solid Electrolyte Interphase Layer. Acta Physico-Chimica Sinica, 2024, 40(3): 2305039-0. doi: 10.3866/PKU.WHXB202305039

Metrics
  • PDF Downloads(4)
  • Abstract views(1134)
  • HTML views(101)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return