Citation: HAN Wen-peng, ZHANG Ye, LI Xue-kuan, TANG Ming-xing, ZHOU Li-gong, WU Ming-hong, GE Hui. Effect of coordinating groups of chelating agents on the hydrodesulfurization over CoMo/γ-Al2O3 catalysts[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(11): 1332-1339. shu

Effect of coordinating groups of chelating agents on the hydrodesulfurization over CoMo/γ-Al2O3 catalysts

  • Corresponding author: WU Ming-hong, mhwu@shu.edu.cn GE Hui, gehui@sxicc.ac.cn
  • Received Date: 1 April 2017
    Revised Date: 24 August 2017

    Fund Project: National Natural Science Foundation of China 21603256the National Natural Science Foundation of China 21473231The project was supported by the National Natural Science Foundation of China (21473231) and National Natural Science Foundation of China(21603256)

Figures(7)

  • The modified CoMo/γ-Al2O3 catalyst was prepared by addition of ethylene diamine (EN), ethanolamine (EA), ethylene glycol (EG) or malonic acid (MA). The effect of four bidentate molecules with different coordination groups on the dibenzothiophene HDS was compared. And the catalytic activity is determined in the sequence of CoMo (EN) > CoMo (EA) > CoMo (EG)≈CoMo (MA) > CoMo. For all catalysts, the direct desulfurization route is dominated, but with the increase of reaction temperature, the desulfurization by hydrogenation route become more apparent. Chelating agents facilitate the HDS reaction through hydrogenation route. CoMo (EN) catalyst presents the highest hydrogenation ability. The catalysts were characterized by UV-vis, EA, XPS and HRTEM. The results show that NH2 group has a strong complexing interaction with Co2+. COOH group mainly has an electrostatic interaction with cobalt ion. Meanwhile, OH group hardly interacts with Co2+. It is noted that the HDS activity is directly related to the interaction between coordinating groups and Co2+. The combination of coordinating molecules with Co2+ leads to the effective formation of Co-Mo-S active center, and the carbonization of chelating decreases the interaction of the support with active phases, facilitating the formation of type Ⅱ active phases which has a higher intrinsic catalytic activity.
  • 加载中
    1. [1]

      WANG Teng-fei, ZHANG Ye, GE Hui, TANG Ming-xing, ZHOU Li-gong, LÜ Zhan-jun, LI Xue-kuan. Hydrodesulfurization of thiophene over Mo/AC catalyst presulfided by ammonium thiosulfate[J]. J Fuel Chem Technol, 2015,43(2):202-207.  

    2. [2]

      FAN Qiang. Industrial application of diesel ultra deep hydrodesulfurization technology producing V diesel oil[J]. Pet Petrochem Today, 2016,24(12):21-29. doi: 10.3969/j.issn.1009-6809.2016.12.005

    3. [3]

      TOPSOE H. The role of Co-Mo-S type structures in hydrotreating catalysts[J]. Appl Catal A:Gen, 2007,322:3-8. doi: 10.1016/j.apcata.2007.01.002

    4. [4]

      HIROSHIMA K, MOCHIZUKI T, HONMA T. High HDS activity of CoMo/Al2O3 modified by some chelates and their surface fine structures[J]. Appl Sur Sci, 1997,21(6):433-436.

    5. [5]

      LELIAS M A, KOOYMAN P J, MARIEY L. Effect of NTA addition on the structure and activity of the active phase of cobalt-molybdenum sulfide hydrotreating catalysts[J]. J Catal, 2009,267(1)179.  

    6. [6]

      ESCOBAR J, BARRERA M C, GUTIERREZ A W. Benzothiophene hydrodesulfurization over NiMo/alumina catalysts modified by citric acid. Effect of addition stage of organic modifier[J]. Fuel Process Technol, 2017,156:33-42. doi: 10.1016/j.fuproc.2016.09.028

    7. [7]

      CIROSPEREZ J, GOMEZ , SERRA M. On the role of triethylene glycol in the preparation of highly active Ni-Mo/Al2O3, hydrodesulfurization catalysts:A spectroscopic study[J]. Appl Catal B:Enriron, 2015,166-167:560-567. doi: 10.1016/j.apcatb.2014.11.039

    8. [8]

      HUI G, LI X, QIN Z. Effects of carbon on the sulfidation and hydrodesulfurization of CoMo hydrating catalysts[J]. Korean J Chem Eng, 2009,26(2):576-581. doi: 10.1007/s11814-009-0098-6

    9. [9]

      BUI N Q, GEANTET C, BERHAULT G. Maleic acid, an efficient additive for the activation of regenerated CoMo/Al2O3, hydrotreating catalysts[J]. J Catal, 2015,330:374-386. doi: 10.1016/j.jcat.2015.07.031

    10. [10]

      GE H, WEN X D, RAMOS M A. Carbonization of ethylenediamine coimpregnated CoMo/Al2O3 catalysts sulfided by organic sulfiding agent[J]. ACS Catal, 2014,4(8):2556-2565. doi: 10.1021/cs500477x

    11. [11]

      CATTANEO R, WEBER T, SHIDO T. A quick EXAFS study of the sulfidation of NiMo/SiO2, hydrotreating catalysts prepared with chelating ligands[J]. J Catal, 2000,191(1):225-236. doi: 10.1006/jcat.1999.2784

    12. [12]

      IWAMOTO R, KAGAMI N, ⅡNO A. Effect of polyethylene glycol addition on hydrodesulfurization activity over CoO-MoO3/Al2O3 catalyst[J]. J Jpn Pet Inst, 2005,48(4):237-242. doi: 10.1627/jpi.48.237

    13. [13]

      VALENCIA D, KLIMOVA T. Kinetic study of NiMo/SBA-15 catalysts prepared with citric acid in hydrodesulfurization of dibenzothiophene[J]. Catal Commun, 2012,21(9):77-81.  

    14. [14]

      INFANTES M A, ROMERO P A, SANCHEZ G V. Role of Cs on hydrodesulfurization activity of RuS2 catalysts supported on a mesoporous SBA-15 type material[J]. ACS Catal, 2011,1(3):175-186. doi: 10.1021/cs100053e

    15. [15]

      ZUO Dong-hua, NIE Hong, VRINAT M, SHI Ya-hua, LACROIX M, LI Da-dong. Study on the hydrodesulfurization active phase in sulfided NiW/Al2O3 catalyst Ⅰ. XPS and HREM characterization[J]. Chin J Chem, 2004,25(4):309-314.

    16. [16]

      RANA M S, RAMIREZ J, GUTIERREZ A A, ANCHEYTA J, CEDENO L, MAITY S K. Support effects in CoMo hydrodesulfurization catalysts prepared with EDTA as a chelating agent[J]. J Catal, 2007,246(1):100-108. doi: 10.1016/j.jcat.2006.11.025

    17. [17]

      BAI Tian-zhong, LIU Ji-hua, LIU Wei, SONG Yong-yi, SUN Hou-xiang, BAO Hong-zhou. Study on the mechanism of diesel hydrodesulfurization[J]. Guangdong Chem Ind, 2011,38(9):92-93.  

    18. [18]

      XU Yong-qiang, ZHAO Rui-yu, SHANG Hong-yan, ZHAO Hui-ji, LIU Chen-guang. Mechanism of hydrodesulfurization of dibenzothiophene and 4-methyldibenzothiophene on Mo/γ-Al2O3 and CoMo/γ-Al2O3[J]. Acta Pet Sin, 2003,19(5):14-21.

    19. [19]

      PAPADOPOULOU C, VAKROS J, MATRALIS H K. Preparation, characterization, and catalytic activity of CoMo/γ-Al2O3 catalysts prepared by equilibrium deposition filtration and conventional impregnation techniques[J]. J Colloid Interface Sci, 2004,274(1):159-166. doi: 10.1016/j.jcis.2003.11.041

    20. [20]

      QIU L, XU G. Peak overlaps and corresponding solutions in the X-ray photoelectron spectroscopic study of hydrodesulfurization catalysts[J]. Appl Surf Sci, 2010,256(11):3413-3417. doi: 10.1016/j.apsusc.2009.12.043

    21. [21]

      BERIT H, HENRIK T. A density functional study of the chemical differences between type Ⅰ and type Ⅱ MoS2-based structures in hydrotreating catalysts[J]. J Phys Chem B, 2005,109(6):2245-2253. doi: 10.1021/jp048842y

    22. [22]

      RINALDI N, KUBOTA T, OKAMOTO Y. Effect of citric acid addition on Co-Mo/B2O3/Al2O3 catalysts prepared by a post-treatment Method[J]. Ind Eng Chem Res, 2009,48(23):10414-10424. doi: 10.1021/ie9008343

    23. [23]

      VALENCIA D, KLIMOVA T. Citric acid loading for MoS2-based catalysts supported on SBA-15. New catalytic materials with high hydrogenolysis ability in hydrodesulfurization[J]. Appl Catal B:Enriron, 2013,129(2):137-145.

  • 加载中
    1. [1]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    2. [2]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    3. [3]

      Yanglin JiangMingqing ChenMin LiangYige YaoYan ZhangPeng WangJianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 2309027-0. doi: 10.3866/PKU.WHXB202309027

    4. [4]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    5. [5]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    6. [6]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    7. [7]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    8. [8]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    9. [9]

      Shiyang HeDandan ChuZhixin PangYuhang DuJiayi WangYuhong ChenYumeng SuJianhua QinXiangrong PanZhan ZhouJingguo LiLufang MaChaoliang Tan . Pt Single-Atom-Functionalized 2D Al-TCPP MOF Nanosheets for Enhanced Photodynamic Antimicrobial Therapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-0. doi: 10.1016/j.actphy.2025.100046

    10. [10]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    11. [11]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    12. [12]

      Jianding LIJunyang FENGHuimin RENGang LI . Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464

    13. [13]

      Wenke ZHENGCe LIUWei CHENHongshan KEFanlong ZENGYibo LEIAnyang LIWenyuan WANG . Synthesis and bonding analysis of low-coordinate Fe and Cr complexes with ultra-bulky silylamino groups. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1285-1293. doi: 10.11862/CJIC.20250095

    14. [14]

      Shuang CaoBo ZhongChuanbiao BieBei ChengFeiyan Xu . Insights into Photocatalytic Mechanism of H2 Production Integrated with Organic Transformation over WO3/Zn0.5Cd0.5S S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(5): 2307016-0. doi: 10.3866/PKU.WHXB202307016

    15. [15]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    16. [16]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

    17. [17]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    18. [18]

      Ruonan LiShijie LiangYunhua XuCuifen ZhangZheng TangBaiqiao LiuWeiwei Li . Chlorine-Substituted Double-Cable Conjugated Polymers with Near-Infrared Absorption for Low Energy Loss Single-Component Organic Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(8): 2307037-0. doi: 10.3866/PKU.WHXB202307037

    19. [19]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    20. [20]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

Metrics
  • PDF Downloads(4)
  • Abstract views(1934)
  • HTML views(970)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return