Citation: Wu Sijia, Wu Kunyuan, Zeng Shaoxiao, Li Yushuang, Chen Junde. Research Progress in Collagen Electrostatic Spinning[J]. Chemistry, ;2020, 83(11): 997-1006. shu

Research Progress in Collagen Electrostatic Spinning

  • Corresponding author: Chen Junde, jdchen@tio.org.cn
  • Received Date: 11 May 2020
    Accepted Date: 1 July 2020

Figures(1)

  • Collagen is the main structural protein of the extracellular matrix, and is found throughout the bodies of all kinds of animals. However, natural collagen has unevenness fibers, poor mechanical properties, which limits its industrial applications. Finding a way to produce a thermostable protein that shares the good properties of collagen is an important issue. Electrostatic spinning technology is a new kind of nano-material manufacturing technology. It is used to produce collagen-based nanofiber materials with different structures and properties. The prepared nanofiber material exhibits excellent characteristics such as low density and high elasticity, and is expected to be widely used in tissue engineering, medicine, chemical carrier and other fields. This paper discusses the progress in collagen electrospinning technology with respect to single static spinning of collagen and its influencing factors, collagen synthesis electrostatic spinning and its influencing factors, and applications of collagen electrospinning. The existing problems and directions for development are also discussed so as to provide theoretical guidance and technical support for the use of collagen.
  • 加载中
    1. [1]

    2. [2]

    3. [3]

      Gu L S, Shan T T, Ma Y X, et al. Trends Biotechnol., 2019, 37(5): 464~491.

    4. [4]

      Shi Z, Li G, Hu Y. Chin. Chem. Lett., 2019, 30(9): 1600~1606.

    5. [5]

    6. [6]

    7. [7]

      Cho Y H, Kim S D, Kim J F, et al. J. Membr. Sci., 2019, 579: 329~341.

    8. [8]

      Bera T, Fang J. RSC Adv., 2013, 3(44): 21576~21581.

    9. [9]

      Dehnavi N, Parivar K, Goodarzi V. Polym. Adv. Technol., 2019, 30(9): 2192~2206.

    10. [10]

      Huang L, Apkarian R P, Elliot L C M D, et al. Scanning, 2001, 23(6): 372~375.

    11. [11]

      Matthews J A, Wnek G E, Simpson D G, et al. Biomacromolecules, 2002, 3(2): 232~238.

    12. [12]

      Matthews J A, Boland E D, Wnek G E, et al. J. Bioact. Compat. Polym., 2003, 18(2): 125~134.

    13. [13]

      Boland E D, Matthews J A, Pawlowski K J, et al. Front. Biosci., 2004, 9(2): 1422~1432.

    14. [14]

      Venugopal J, Ma L L, Yong T, et al. Cell Biol. Int., 2005, 29(10): 861~867.

    15. [15]

      Das P, DiVito M D, Wertheim J A, et al. Cell Biol. Int., 2020, 111: 110723.

    16. [16]

      Sorushanova A, Delgado L M, Wu Z, et al. Adv. Biomater., 2019, 31(1): 1801651.

    17. [17]

      Hjorten R, Hansen U, Underwood R A, et al. Bone, 2007, 41(4): 535~542.

    18. [18]

      Sutmuller M, Bruijn J A, Heer E D. Histol. Histopathol., 1997, 12(2): 557~566.

    19. [19]

      Suzuki T, Sasai A, Tsujimoto H, et al. STP Pharma Sci., 2020, 58: 101624.

    20. [20]

      Bretaud S, Guillon E, Karppinen S, et al. Matrix Biol. Plus, 2020, 6-7: 100023.

    21. [21]

      Sato K, Yomogida K, Wada T, et al. J. Biol. Chem., 2002, 277(40): 37678~37684.

    22. [22]

      Gebauer J M, Kobbe B, Paulsson M, et al. Matrix Biol., 2016, 49: 106~119.

    23. [23]

      Konomi H, Hayashi T, Nakayasu K, et al. Am. J. Pathol., 1984, 116(3): 417~426.

    24. [24]

      Barnes C P, Sell S A, Boland E D, et al. Adv. Drug Deliv. Rev., 2008, 59(14): 1413~1433.

    25. [25]

      Kumbar S G, James R, Nukavarapu S P, et al. Biomed. Mater., 2008, 3(3): 34002.

    26. [26]

      Burck J, Aras O, Bertinetti L, et al. J. Mol. Struct., 2018, 1151: 73~80.

    27. [27]

    28. [28]

      Corre-Bordes D L, Hofman K, Hall B. Int. J. Biol. Macromol., 2018, 112: 1289~1299.

    29. [29]

      Tenchurin T K, Belousov S I, Kiryukhin Y I, et al. J. Biomed. Mater. Res. A, 2019, 107: 312~318.

    30. [30]

      Kazanci M. Mater. Lett., 2014, 130(3): 223~226.

    31. [31]

      Li Y, Douglas E P. Colloids Surf. B, 2013, 112: 42~50.

    32. [32]

      Meng Z, Zheng X, Tang K, et al. Int. J. Biol. Macromol., 2012, 51(4): 440~448.

    33. [33]

      Kitsara M, Joanne P, Boitard S E, et al. Microelectron. Eng., 2015, 144: 46~50.

    34. [34]

      Dong B, O Arnoult, Smith M E, et al. Macromol. Rapid Commun., 2009, 30(7): 539~542.

    35. [35]

      Bak S Y, Yoon G J, Lee S W, et al. Mater. Lett., 2016, 181: 136~139.

    36. [36]

      Barrientos I J H, Paladino E, Peter S, et al. Int. J. Pharm., 2017, 531(1): 67~79.

    37. [37]

    38. [38]

      Carlisle C R, Coulais C, Guthold M. Acta Biomater., 2010, 6(8): 2997~3003.

    39. [39]

      Yang L, Fitie C F C, Werf K O V D, et al. Biomaterials, 2008, 29(8): 955~962.

    40. [40]

      Buck M. Q. Rev. Biophys., 1998, 31(3): 297~355.

    41. [41]

      Buerck J, Heissler S, Geckle U, et al. Langmuir, 2013, 29(5): 1562~1572.

    42. [42]

      Russell A E. Biochem. J., 1973, 131: 335.

    43. [43]

      Elamparithi A, Punnoose A M, Kuruvilla S. Artif. Cells Nanomed. Biotechnol., 2016, 44(5): 1318~1325.

    44. [44]

      Turker E, Yildiz U H, Arslan Y A. Int. J. Biol. Macromol., 2019, 139: 1054~1062.

    45. [45]

      Zhang X, Ookawa M, Tan Y, et al. Food Chem., 2014, 160: 305~312.

    46. [46]

      Jayaraman K, Kotaki M, Zhang Y, et al. J. Nanosci. Nanotechnol., 2004, 4: 52~65.

    47. [47]

      Sell S A, Wolfe P S, Garg K, et al. Polymes, 2010, 2(4): 522~553

    48. [48]

      Barnes C. Adv. Drug Deliv. Rev., 2007, 59: 1413~1433.

    49. [49]

      Bi C H, Li X H, Xin Q, et al. J. Biosci. Bioeng., 2019, 128(2): 234~240.

    50. [50]

      Knapp D C. The Extraction of Type Ⅱ Collagen and the Electrospinning of Nano-Fibrous Scaffolds. VCU (Virginia Commonwealth University) Theses and Dissertations, 2005, https://doi.org/10.25772/PB2D~GD48.

    51. [51]

      Sell S A, Mcclure M J, Garg K, et al. Adv. Drug Deliv. Rev., 2009, 61(12): 1007~1019.

    52. [52]

      Wang Q Q, Nandgaonkar A G, Cui J, et al. RSC Adv., 2014, 4(106): 61573~61579.

    53. [53]

      Tan S H, Inai R, Kotaki M, et al. Polymer, 2005, 46(16): 6128~6134.

    54. [54]

      Yang Q B, Li Z Y, Hong Y L, Y, et al. J. Polym. Sci. B, 2004, 27(20): 3721~3726.

    55. [55]

      Dong Z X, Wu Y Q, Clark R L. Langmuir, 2011, 27(20): 12417~12422.

    56. [56]

      Doshi J, Reneker D H. J. Electrost., 1995, 35(2-3): 151~160.

    57. [57]

      Chen D W, Hsu Y H, Liao J Y, et al. Int. J. Pharm., 2012, 430(1-2): 335~341.

    58. [58]

      Almetwally A A, El-Sakhawy M, Elshakankery M H, et al. J. Text. Assoc., 2017, 78(1): 5~14.

    59. [59]

      Chen Z G, Mo X M, He C L, Wang H S. Carbohydr. Polym., 2007, 72(3): 410~418.

    60. [60]

      Matthew J F, Wnek Gary E. Drug Deliv. Transl. Res., 2012, 2: 313~322.

    61. [61]

      Sakellari M, Chondrogianni N, Gonos E S. Biochem. Biophys. Res. Commun., 2019, 514(1): 224~230.

    62. [62]

    63. [63]

      Zhu B. Ill. Inst. Technol., 2017, 78(10): 211.

    64. [64]

      Zhou J A, Cao C B, Ma X L, et al. Int. J. Biol. Macromol., 2010, 47(4): 514~519.

    65. [65]

      Chomachayi M D, Solouk A, Akbari S, et al. J. Biomed. Mater. Res. A, 2018, 106(4): 1092~1103.

    66. [66]

      Buttafoco L, Kolkman N G, Engbers-Buijtenhuijs P, et al. Biomaterials, 2006, 27(5): 724~734.

    67. [67]

      Vazquez J J, Martinez E S. J. Mater. Res., 2019, 34(16): 2819~2827.

    68. [68]

      Rnjak-Kovacina J, Wise S G, Li Z, et al. Acta Biomater., 2012, 8(10): 3714~3722.

    69. [69]

    70. [70]

      Chen Z G, Mo X M, He C L, et al. Carbohydr. Polym., 2007, 72(3): 410~418.

    71. [71]

      Zhong S P, Teo W E, Zhu X, et al. Mater. Sci. Eng. C, 2006, 27(2): 262~266.

    72. [72]

      Chen Z G, Wang P W, Wei B, et al. Acta Biomater., 2010, 6(2): 372~382.

    73. [73]

    74. [74]

      Ji J, Bar-On B, Wagner H D. J. Mech. Behav. Biomed. Mater., 2012, 13: 185~193.

    75. [75]

      Dhand C, Ong S T, Dwivedi N, et al. Biomaterials, 2016, 104: 323~338.

    76. [76]

    77. [77]

      Zhang S F, Chen L K, Jiang Y Z, et al. Acta Biomater., 2013, 9(7): 7236~7247.

    78. [78]

      Brown J H, Das P, Michael D D, et al. Acta Biomater., 2018, 73: 217~227.

    79. [79]

      Kim J I, Kim J Y, Park C H. Sci. Rep., 2018, 8(1): 3424.

    80. [80]

      Theisen C, Fuchs-Winkelmann S, Knappstein K, et al. Biomed. Eng. OnLine, 2010, 9(1): 9.

    81. [81]

      Chen R, Huang C, Ke Q F, et al. Colloids Surf. B, 2010, 79(2): 315~325.

    82. [82]

      Prabhakaran M P, Vatankhah E, Ramakrishna S. Biotechnol. Bioeng., 2013, 110(10): 2775~2784.

    83. [83]

      Li X C, Yan S S, Dai J, et al. Colloids Surf. B, 2018, 162: 390~397.

    84. [84]

      Aguirre-Chagala Y E, Altuzar V, Leon-Sarabia E, et al. Mater. Sci. Eng. C, 2017, 76(6): 897~907.

    85. [85]

      Law J X, Liau L L, Saim A, et al. Tissue Eng. Regener. Med., 2017, 14: 699~718.

    86. [86]

      Kang Y, Chen P, Shi X T, et al. Polymer, 2018, 156: 250~260.

    87. [87]

      Xing H, Lee H, Luo L J. Biotechnol. Adv., 2019, 107: 549~559.

    88. [88]

      Zhou T, Wang N, Xue Y, et al. Colloids Surf. B, 2016, 143: 415~422.

    89. [89]

      Tabor A J, Robinson A, Pinto B I, et al. Clin. Res. Dermatol., 2016, 3(2): 1~8.

    90. [90]

      Liu T, Xu J, Chan B P, et al. J. Biomed. Mater. Res. A, 2012, 100(1): 236~242.

    91. [91]

      Barrientos I J H, Paladino E, Szabo P, et al. Int. J. Pharm., 2017, 531(1): 67~79.

  • 加载中
    1. [1]

      Qiuping Liu Yongxian Fan Wenxian Chen Mengdi Wang Mei Mei Genrong Qiang . Design of Ideological and Political Education for the Preparation Experiment of Ferrous Sulfate. University Chemistry, 2024, 39(2): 116-120. doi: 10.3866/PKU.DXHX202309083

    2. [2]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    3. [3]

      Yuyang Xu Ruying Yang Yanzhe Zhang Yandong Liu Keyi Li Zehui Wei . Research Progress of Aflatoxins Removal by Modern Optical Methods. University Chemistry, 2024, 39(11): 174-181. doi: 10.12461/PKU.DXHX202402064

    4. [4]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    5. [5]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    6. [6]

      Yufan Pan Xue Ding Jiayu Lin Haiting Wu Hairong Huang Cuixue Chen Meiling Ye . Oil Cosmetics, Charming Chemistry: A Gradient Science Popularization Scheme for Cream Cosmetic Preparation. University Chemistry, 2025, 40(4): 382-389. doi: 10.12461/PKU.DXHX202406078

    7. [7]

      Lingqi Zhang Hairong Huang Jialin Li Li Ji Yufan Pan Meiling Ye Cuixue Chen Shunü Peng . 桂花碳量子点的绿色制备及科普应用方案. University Chemistry, 2025, 40(8): 298-306. doi: 10.12461/PKU.DXHX202409138

    8. [8]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

    9. [9]

      Siran Wang Yinuo Wang Yilong Zhao Dazhen Xu . Advances in the Application and Preparation of Rhodanine and Its Derivatives. University Chemistry, 2025, 40(5): 318-327. doi: 10.12461/PKU.DXHX202407033

    10. [10]

      Liu LinZemin SunHuatian ChenLian ZhaoMingyue SunYitao YangZhensheng LiaoXinyu WuXinxin LiCheng Tang . Recent Advances in Electrocatalytic Two-Electron Water Oxidation for Green H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(4): 2305019-0. doi: 10.3866/PKU.WHXB202305019

    11. [11]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    12. [12]

      Yongqing XuYuyao YangMengna WuXiaoxiao YangXuan BieShiyu ZhangQinghai LiYanguo ZhangChenwei ZhangRobert E. PrzekopBogna SztorchDariusz BrzakalskiHui Zhou . Review on Using Molybdenum Carbides for the Thermal Catalysis of CO2 Hydrogenation to Produce High-Value-Added Chemicals and Fuels. Acta Physico-Chimica Sinica, 2024, 40(4): 2304003-0. doi: 10.3866/PKU.WHXB202304003

    13. [13]

      Qi LiPingan LiZetong LiuJiahui ZhangHao ZhangWeilai YuXianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030

    14. [14]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    15. [15]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    16. [16]

      Wenli FENGLu ZHAOYunfeng BAIFeng FENG . Research progress on ultralong room temperature phosphorescent carbon dots. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 833-846. doi: 10.11862/CJIC.20240308

    17. [17]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    18. [18]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    19. [19]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    20. [20]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

Metrics
  • PDF Downloads(39)
  • Abstract views(1954)
  • HTML views(558)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return