Citation: Bo Liu, Tong Xu, Chunping Li, Junzhong Wang, Jie Bai. Progress of Heterogeneous Catalysts for Photocatalytic Suzuki Coupling Reaction[J]. Chemistry, ;2021, 84(1): 31-39. shu

Progress of Heterogeneous Catalysts for Photocatalytic Suzuki Coupling Reaction

  • Corresponding author: Jie Bai, baijie@imut.edu.cn
  • Received Date: 7 August 2020
    Accepted Date: 26 August 2020

Figures(8)

  • Suzuki cross-coupling reaction has been widely recognized as one of the most effective methods for the construction of C-C bonds and plays an important role in medicine, dye and electronics industry. In recent years, with the rapid development of photocatalytic technology and green organic synthetic chemistry, the use of renewable solar photocatalytic Suzuki cross-coupling reaction can not only solve energy and environmental problems, but also can obtain high yield of biphenyl compound at room temperature, so it has attracted the widespread attention of scientists. Compared with the homogeneous photocatalyst, the heterogeneous photocatalyst with advantages of good chemical stability and convenient recovery and recycling has become the key research object of photocatalytic Suzuki cross-coupling reaction. In this review, the basic principle of Suzuki cross-coupling reaction photocatalyzed by heterogeneous catalyst is summarized, and a series of researches on the preparation method, catalytic performance and recyclability of heterogeneous catalyst in photocatalytic Suzuki cross-coupling reaction are introduced.
  • 加载中
    1. [1]

      Rygus J P, Crudden C M. J. Am. Chem. Soc., 2017, 139(50): 18124~18137. 

    2. [2]

    3. [3]

      Li H B, Seechum C J, Colaco T J. ACS Catal., 2012, 2(6): 1147~1164. 

    4. [4]

      Bai C, Wang X, Tang S B, et al. Adv. Mater., 2018, 30(40): 1~7.

    5. [5]

       

    6. [6]

      Wang X N, Wang F L, Sang Y H, et al. Adv. Energy Mater., 2017, 7(23): 1~15.

    7. [7]

       

    8. [8]

       

    9. [9]

      Zhang S, Chang C, Huang Z. ACS Catal., 2015, 5(11): 6481~6488. 

    10. [10]

      Mehdi K, Mona H S. Catal. Commun., 2018, 111: 10~15. 

    11. [11]

      Siyavash K M, Seyedesahar M, Minoo D. J. Alloy Compd., 2019, 819: 1~13.

    12. [12]

      Wang N, Ma L X, Wang J, et al. ChemPlusChem, 2019, 84(8): 1164~1168. 

    13. [13]

      Mojtaba B, Reyhaneh K, Hamed M. J. Mater. Chem. A, 2019, 7(27): 16257~16266. 

    14. [14]

      Fahimeh F, Maasoumeh J, Abdolreza R. Catal. Lett., 2019, 149(6): 1595~1610. 

    15. [15]

      Jeet C, Ipsita N, Francis V. Chem. Eng. J., 2019, 358: 580~588. 

    16. [16]

    17. [17]

      Feng X, Li Z H. J. Photoch. Photobio. A, 2017, 337: 19~24. 

    18. [18]

      Sahar R, Abolfazl Z, Ghodsi M Z, et al. Catal. Sci. Technol., 2019, 9(14): 3820~3827. 

    19. [19]

      Liu B, Xu T, Li C P, et al. New J. Chem., 2020, 44(9): 3794~3801. 

    20. [20]

      Monah S, Zahra B. Chemistry Select, 2018, 3(6): 1898~1907.

    21. [21]

      Fu W Z, Xu X W, Wang W B, et al. ACS Sustain. Chem. Eng., 2018, 6(7): 8935~8944. 

    22. [22]

      Li Y L, Zhang Z Q, Pei L Y, et al. Appl. Catal. B, 2016, 190: 1~11. 

    23. [23]

      Jiao Z F, Zhai Z Y, Guo X N, et al. J. Phys. Chem. C, 2015, 119(6): 3238~3243. 

    24. [24]

       

    25. [25]

      Shin H H, Kang E, Park H, et al. J. Mater. Chem. A, 2017, 5(47): 24965~24971. 

    26. [26]

      Yim D B, Raza F, Park J H, et al. ACS Appl. Mater. Inter., 2019, 11(40): 36960~36969. 

    27. [27]

      Duarah R, Karak N. Ind. Eng. Chem. Res., 2019, 58(36): 16307~16319. 

    28. [28]

      Zhao X H, Xie J T, Liu X, et al. Appl. Organomet. Chem., 2019, 33(1): 1~10.

    29. [29]

      Xie A M, Zhang K, Wu F, et al. Catal. Sci. Technol., 2016, 6(6): 1764~1771. 

    30. [30]

      Wang Z J, Ghasimi S, Landfester K, et al. Chem. Mater., 2015, 27(6): 1921~1924. 

    31. [31]

      Sun D R, Li Z H. J. Phys. Chem. C, 2016, 120(35): 19744~19750. 

    32. [32]

      Sun D R, Xu M P, Jiang Y T, et al. Small Methods, 2018, 2(12): 1~7.

    33. [33]

      Wang F, Li C H, Chen H J, et al. J. Am. Chem. Soc., 2013, 135(15): 5588~5601. 

    34. [34]

      Yoshii T, Kuwahara Y, Mori K, et al. J. Phys. Chem. C, 2019, 123(40): 24575~24583. 

    35. [35]

      Ma T, Liang F. J. Phys. Chem. C, 2020, 124(14): 7812~7822. 

    36. [36]

    37. [37]

      Liu S H, Tang W T, Lin W X, et al. Int. J. Hydrogen Energ., 2017, 42(38): 24006~24013. 

    38. [38]

      Gogoi D, Namdeo A, Golder A K, et al. Int. J. Hydrogen Energ., 2020, 45(4): 2729~2744. 

    39. [39]

      Singhal N, Kumar U. Mol. Catal., 2017, 439: 91~99. 

    40. [40]

      Cheng G, Wei Y, Xiong J Y, et al. J. Alloy Compd., 2017, 723: 948~959. 

    41. [41]

      Toyoda T, Shen Q, Hironaka M, et al. J. Phys. Chem. C, 2018, 122(51): 29200~29209. 

    42. [42]

      Zhang R, Wang Q, Zhang J, et al. Nanotechnology, 2019, 30(43): 1~19.

    43. [43]

      Liu Z, Menendez C, ShenoY J, et al. Nano Energy, 2020, 72: 1~10.

    44. [44]

      Chen Y N, Feng L. J. Photoch. Photobio. B, 2020, 205: 1~34.

    45. [45]

      Sharma K, Kumar M, BhallA V. Chem. Commun., 2015, 51: 12529~12532. 

    46. [46]

      Singh G, Kumar M, Sharma K, et al. Green Chem., 2016, 18(11): 3278~3285. 

    47. [47]

      Prajapati P K, Saini S, Jain S L. J. Mater. Chem. A, 2020, 8(10): 5246~5254. 

  • 加载中
    1. [1]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012

    2. [2]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

    3. [3]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    4. [4]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    5. [5]

      Xinyu XuJiale LuBo SuJiayi ChenXiong ChenSibo Wang . Steering charge dynamics and surface reactivity for photocatalytic selective methane oxidation to ethane over Au/Ti-CeO2. Acta Physico-Chimica Sinica, 2025, 41(11): 100153-0. doi: 10.1016/j.actphy.2025.100153

    6. [6]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    7. [7]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    8. [8]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    9. [9]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    10. [10]

      Deyun MaFenglan LiangQingquan XueYanping LiuChunqiang ZhuangShijie Li . Interfacial engineering of Cd0.5Zn0.5S/BiOBr S-scheme heterojunction with oxygen vacancies for effective photocatalytic antibiotic removal. Acta Physico-Chimica Sinica, 2025, 41(12): 100190-0. doi: 10.1016/j.actphy.2025.100190

    11. [11]

      Qinhui GuanYuhao GuoNa LiJing LiTingjiang Yan . Molecular sieve-mediated indium oxide catalysts for enhancing photocatalytic CO2 hydrogenation. Acta Physico-Chimica Sinica, 2025, 41(11): 100133-0. doi: 10.1016/j.actphy.2025.100133

    12. [12]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    13. [13]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    14. [14]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    15. [15]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    16. [16]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    17. [17]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    18. [18]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    19. [19]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    20. [20]

      Xia ZHANGYushi BAIXi CHANGHan ZHANGHaoyu ZHANGLiman PENGShushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255

Metrics
  • PDF Downloads(35)
  • Abstract views(2247)
  • HTML views(536)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return