Citation: Bo Liu, Tong Xu, Chunping Li, Junzhong Wang, Jie Bai. Progress of Heterogeneous Catalysts for Photocatalytic Suzuki Coupling Reaction[J]. Chemistry, ;2021, 84(1): 31-39. shu

Progress of Heterogeneous Catalysts for Photocatalytic Suzuki Coupling Reaction

  • Corresponding author: Jie Bai, baijie@imut.edu.cn
  • Received Date: 7 August 2020
    Accepted Date: 26 August 2020

Figures(8)

  • Suzuki cross-coupling reaction has been widely recognized as one of the most effective methods for the construction of C-C bonds and plays an important role in medicine, dye and electronics industry. In recent years, with the rapid development of photocatalytic technology and green organic synthetic chemistry, the use of renewable solar photocatalytic Suzuki cross-coupling reaction can not only solve energy and environmental problems, but also can obtain high yield of biphenyl compound at room temperature, so it has attracted the widespread attention of scientists. Compared with the homogeneous photocatalyst, the heterogeneous photocatalyst with advantages of good chemical stability and convenient recovery and recycling has become the key research object of photocatalytic Suzuki cross-coupling reaction. In this review, the basic principle of Suzuki cross-coupling reaction photocatalyzed by heterogeneous catalyst is summarized, and a series of researches on the preparation method, catalytic performance and recyclability of heterogeneous catalyst in photocatalytic Suzuki cross-coupling reaction are introduced.
  • 加载中
    1. [1]

      Rygus J P, Crudden C M. J. Am. Chem. Soc., 2017, 139(50): 18124~18137. 

    2. [2]

    3. [3]

      Li H B, Seechum C J, Colaco T J. ACS Catal., 2012, 2(6): 1147~1164. 

    4. [4]

      Bai C, Wang X, Tang S B, et al. Adv. Mater., 2018, 30(40): 1~7.

    5. [5]

       

    6. [6]

      Wang X N, Wang F L, Sang Y H, et al. Adv. Energy Mater., 2017, 7(23): 1~15.

    7. [7]

       

    8. [8]

       

    9. [9]

      Zhang S, Chang C, Huang Z. ACS Catal., 2015, 5(11): 6481~6488. 

    10. [10]

      Mehdi K, Mona H S. Catal. Commun., 2018, 111: 10~15. 

    11. [11]

      Siyavash K M, Seyedesahar M, Minoo D. J. Alloy Compd., 2019, 819: 1~13.

    12. [12]

      Wang N, Ma L X, Wang J, et al. ChemPlusChem, 2019, 84(8): 1164~1168. 

    13. [13]

      Mojtaba B, Reyhaneh K, Hamed M. J. Mater. Chem. A, 2019, 7(27): 16257~16266. 

    14. [14]

      Fahimeh F, Maasoumeh J, Abdolreza R. Catal. Lett., 2019, 149(6): 1595~1610. 

    15. [15]

      Jeet C, Ipsita N, Francis V. Chem. Eng. J., 2019, 358: 580~588. 

    16. [16]

    17. [17]

      Feng X, Li Z H. J. Photoch. Photobio. A, 2017, 337: 19~24. 

    18. [18]

      Sahar R, Abolfazl Z, Ghodsi M Z, et al. Catal. Sci. Technol., 2019, 9(14): 3820~3827. 

    19. [19]

      Liu B, Xu T, Li C P, et al. New J. Chem., 2020, 44(9): 3794~3801. 

    20. [20]

      Monah S, Zahra B. Chemistry Select, 2018, 3(6): 1898~1907.

    21. [21]

      Fu W Z, Xu X W, Wang W B, et al. ACS Sustain. Chem. Eng., 2018, 6(7): 8935~8944. 

    22. [22]

      Li Y L, Zhang Z Q, Pei L Y, et al. Appl. Catal. B, 2016, 190: 1~11. 

    23. [23]

      Jiao Z F, Zhai Z Y, Guo X N, et al. J. Phys. Chem. C, 2015, 119(6): 3238~3243. 

    24. [24]

       

    25. [25]

      Shin H H, Kang E, Park H, et al. J. Mater. Chem. A, 2017, 5(47): 24965~24971. 

    26. [26]

      Yim D B, Raza F, Park J H, et al. ACS Appl. Mater. Inter., 2019, 11(40): 36960~36969. 

    27. [27]

      Duarah R, Karak N. Ind. Eng. Chem. Res., 2019, 58(36): 16307~16319. 

    28. [28]

      Zhao X H, Xie J T, Liu X, et al. Appl. Organomet. Chem., 2019, 33(1): 1~10.

    29. [29]

      Xie A M, Zhang K, Wu F, et al. Catal. Sci. Technol., 2016, 6(6): 1764~1771. 

    30. [30]

      Wang Z J, Ghasimi S, Landfester K, et al. Chem. Mater., 2015, 27(6): 1921~1924. 

    31. [31]

      Sun D R, Li Z H. J. Phys. Chem. C, 2016, 120(35): 19744~19750. 

    32. [32]

      Sun D R, Xu M P, Jiang Y T, et al. Small Methods, 2018, 2(12): 1~7.

    33. [33]

      Wang F, Li C H, Chen H J, et al. J. Am. Chem. Soc., 2013, 135(15): 5588~5601. 

    34. [34]

      Yoshii T, Kuwahara Y, Mori K, et al. J. Phys. Chem. C, 2019, 123(40): 24575~24583. 

    35. [35]

      Ma T, Liang F. J. Phys. Chem. C, 2020, 124(14): 7812~7822. 

    36. [36]

    37. [37]

      Liu S H, Tang W T, Lin W X, et al. Int. J. Hydrogen Energ., 2017, 42(38): 24006~24013. 

    38. [38]

      Gogoi D, Namdeo A, Golder A K, et al. Int. J. Hydrogen Energ., 2020, 45(4): 2729~2744. 

    39. [39]

      Singhal N, Kumar U. Mol. Catal., 2017, 439: 91~99. 

    40. [40]

      Cheng G, Wei Y, Xiong J Y, et al. J. Alloy Compd., 2017, 723: 948~959. 

    41. [41]

      Toyoda T, Shen Q, Hironaka M, et al. J. Phys. Chem. C, 2018, 122(51): 29200~29209. 

    42. [42]

      Zhang R, Wang Q, Zhang J, et al. Nanotechnology, 2019, 30(43): 1~19.

    43. [43]

      Liu Z, Menendez C, ShenoY J, et al. Nano Energy, 2020, 72: 1~10.

    44. [44]

      Chen Y N, Feng L. J. Photoch. Photobio. B, 2020, 205: 1~34.

    45. [45]

      Sharma K, Kumar M, BhallA V. Chem. Commun., 2015, 51: 12529~12532. 

    46. [46]

      Singh G, Kumar M, Sharma K, et al. Green Chem., 2016, 18(11): 3278~3285. 

    47. [47]

      Prajapati P K, Saini S, Jain S L. J. Mater. Chem. A, 2020, 8(10): 5246~5254. 

  • 加载中
    1. [1]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012

    2. [2]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    3. [3]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

    4. [4]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    5. [5]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    6. [6]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    7. [7]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    8. [8]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    9. [9]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    10. [10]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    11. [11]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    12. [12]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    13. [13]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    14. [14]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    15. [15]

      Xia ZHANGYushi BAIXi CHANGHan ZHANGHaoyu ZHANGLiman PENGShushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255

    16. [16]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    17. [17]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    18. [18]

      Jiajia Wang Sibo Huang Xijing Gao Chaoxun Liu Haibo Zhang . 光催化硝酸根还原产氨的综合实验设计. University Chemistry, 2025, 40(8): 241-248. doi: 10.12461/PKU.DXHX202410050

    19. [19]

      Wenxiu YangJinfeng ZhangQuanlong XuYun YangLijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014

    20. [20]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

Metrics
  • PDF Downloads(33)
  • Abstract views(1954)
  • HTML views(496)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return