Citation: Abdulbaset M. Alayat, Elena Echeverria, David N. Mcllroy, Armando G. McDonald. Characterization and catalytic behavior of EDTA modified silica nanosprings (NS)-supported cobalt catalyst for Fischer-Tropsch CO-hydrogenation[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(8): 957-966. shu

Characterization and catalytic behavior of EDTA modified silica nanosprings (NS)-supported cobalt catalyst for Fischer-Tropsch CO-hydrogenation

  • Corresponding author: Abdulbaset M. Alayat, armandm@uidaho.edu
  • Received Date: 14 June 2018
    Revised Date: 3 July 2018

Figures(10)

  • The effect of ethylene diamine tetraacetic acid (EDTA) modification on the physico-chemical properties and catalytic performance of silica nanosprings (NS) supported cobalt (Co) catalyst was investigated in the conversion of syngas (H2 + CO) to hydrocarbons by Fischer-Tropsch synthesis (FTS). The unmodified Co/NS and modified Co/NS-EDTA catalysts were synthesized via an impregnation method. The prepared Co/NS and Co/NS-EDTA catalysts were characterized before the FTS reaction by BET surface area, X-ray diffraction (XRD), transmission electron microscopy (TEM), temperature programmed reduction (TPR), X-ray photoelectron spectroscopy (XPS), differential thermal analysis (DTA) and thermogravimetric analysis (TGA) in order to find correlations between physico-chemical properties of catalysts and catalytic performance. FTS was carried out in a quartz fixed-bed microreactor (H2/CO of 2:1, 230℃ and atmospheric pressure) and the products trapped and analyzed by GC-TCD and GC-MS to determine CO conversion and reaction selectivity. The experimental results indicated that the modified Co/NS-EDTA catalyst displayed a more-dispersed phase of Co3O4 nanoparticles (10.9%) and the Co3O4 average crystallite size was about 12.4 nm. The EDTA modified catalyst showed relatively higher CO conversion (70.3%) and selectivity toward C6-18 (JP-8, Jet A and diesel) than the Co/NS catalyst (C6-14) (JP-4).
  • 加载中
    1. [1]

      ALAYAT A, MCLLROY D, MCDONALD A G. Effect of synthesis and activation methods on the catalytic properties of silica nanospring (NS)-supported iron catalyst for Fischer-Tropsch synthesis[J]. Fuel Process Technol, 2018,169:132-141. doi: 10.1016/j.fuproc.2017.09.011

    2. [2]

      ZHAO Y H, SONG Y H, HAO Q Q, WANG Y J, WANG W, LIU Z T, ZHANG D, LIU Z W, ZHANG Q J, LU J. Cobalt-supported carbon and alumina co-pillared montmorillonite for Fischer-Tropsch synthesis[J]. Fuel Process Technol, 2015,138:116-124. doi: 10.1016/j.fuproc.2015.05.019

    3. [3]

      XIE R, LI D, HOU B, WANG J, JIA L, SUN Y. Silylated Co3O4-m-SiO2 catalysts for Fischer-Tropsch synthesis[J]. Catal Commun, 2011,12(7):589-592. doi: 10.1016/j.catcom.2010.12.013

    4. [4]

      MOCHIZUKI T, HARA T, KOIZUMI N, YAMADA M. Novel preparation method of highly active Co/SiO2 catalyst for Fischer-Tropsch synthesis with chelating agents[J]. Catal Lett, 2007,113(3/4):165-169.  

    5. [5]

      BAMBAL A S. Study of the effect of surface modification and sulfur impurities in syngas on the Fischer-Tropsch performance of cobalt catalysts[J]. Morgantown:West Virginia University, 2012.

    6. [6]

      JI L, LIN J, TAN K, ZENG H. Synthesis of high-surface-area alumina using aluminum tri-sec-butoxide-2, 4-pentanedione-2-propanol-nitric acid precursors[J]. Chem materials, 2000,12(4):931-939.

    7. [7]

      BAMBAL A S, KUGLER E L, GARDNER T H, DADYBURJOR D B. Effect of surface modification by chelating agents on Fischer-Tropsch performance of Co/SiO2 catalysts[J]. Ind Eng Chem Res, 2013,52(47):16675-16688. doi: 10.1021/ie4019676

    8. [8]

      KOIZUMI N, IBI Y, HONGO D, HAMABE Y, SUZUKI S, HAYASAKA Y, SHINDO T, YAMADA M. Mechanistic aspects of the role of chelating agents in enhancing Fischer-Tropsch synthesis activity of Co/SiO2 catalyst:Importance of specific interaction of Co with chelate complex during calcination[J]. J Catal, 2012,289:151-163. doi: 10.1016/j.jcat.2012.02.003

    9. [9]

      VALENCIA D, PENA L, UC VH, GARCÍA-CRUZ I. Metal-support interactions revisited by theoretical calculations:The influence of organic ligands for preparing Ni/SiO2 catalysts[J]. Appl Catal A:Gen, 2014,475:134-139. doi: 10.1016/j.apcata.2014.01.018

    10. [10]

      REPO E, MALINEN L, KOIVULA R, HARJULA R, SILLANPÄÄ M. Capture of Co (Ⅱ) from its aqueous EDTA-chelate by DTPA-modified silica gel and chitosan[J]. J Hazardous Materials, 2011,187(1/3):122-132.

    11. [11]

      KUMAR R, BARAKAT M, DAZA Y, WOODCOCK H, KUHN J. EDTA functionalized silica for removal of Cu (Ⅱ), Zn (Ⅱ) and Ni (Ⅱ) from aqueous solution[J]. J Colloid Interface Sci, 2013,408:200-205. doi: 10.1016/j.jcis.2013.07.019

    12. [12]

      KUŚMIERZ M, PASIECZNA-PATKOWSKA S. FT-IR/PAS study of surface EDTA-ZnO interactions[J]. Annales UMCS, Chemia, ,68(1/2):25-31.

    13. [13]

      MOCHIZUKI T, HARA T, KOIZUMI N, YAMADA M. Surface structure and Fischer-Tropsch synthesis activity of highly active Co/SiO2 catalysts prepared from the impregnating solution modified with some chelating agents[J]. Appl Catal A:Gen, 2007,317(1):97-104. doi: 10.1016/j.apcata.2006.10.005

    14. [14]

      SAI V, GANGADEAN D, NIRAULA I, JABAL J M, CORTI G, MCILROY D, ERIC ASTON D, BRANEN J R, HRDLICKA P J. Silica nanosprings coated with noble metal nanoparticles:Highly active SERS substrates[J]. J Phys Chem C, 2010,115(2):453-459.

    15. [15]

      LUO G, FOUETIO KENGNE B A, MCILROY D N, MCDONALD A G. A novel nano fischer-tropsch catalyst for the production of hydrocarbons[J]. Environmental Progress Sustainable Energy, 2014,33(3):693-698. doi: 10.1002/ep.v33.3

    16. [16]

      KENGNE B A F, ALAYAT A M, LUO G, MCDONALD A G, BROWN J, SMOTHERMAN H, MCLLROY D N. Preparation, surface characterization and performance of a Fischer-Tropsch catalyst of cobalt supported on silica nanosprings[J]. Appl Surface Sci, 2015,359:508-514. doi: 10.1016/j.apsusc.2015.10.081

    17. [17]

      AHMADIPOUR M, HATAMI M, RAO K V. Preparation and characterization of nano-sized (Mg (x) Fe (1-x) O/SiO2)(x=0.1) core-shell nanoparticles by chemical precipitation method[J]. Adv Nanopart, 2012,46(2):315-328.

    18. [18]

      HAO Q Q, ZHAO Y H, YANG H H, LIU Z T, LIU Z W. Alumina grafted to SBA-15 in supercritical CO2 as a support of cobalt for Fischer-Tropsch synthesis[J]. Energy Fuels, 2012,26(11):6567-6575. doi: 10.1021/ef301447s

    19. [19]

      REPO E, WARCHOŁ J K, BHATNAGAR A, SILLANPÄÄ M. Heavy metals adsorption by novel EDTA-modified chitosan-silica hybrid materials[J]. J Colloid Interface Sci, 2011,358(1):261-267. doi: 10.1016/j.jcis.2011.02.059

    20. [20]

      BADOGA S. Synthesis and characterization of NiMo supported mesoporous materials with EDTA and phosphorus for hydrotreating of heavy gas oil[D]. Sakatchewan: University of Sakatchewan, 2015.

    21. [21]

      THYSSEN V V, MAIA T A, ASSAF E M. Cu and Ni catalysts supported on γ-Al2O3 and SiO2 assessed in glycerol steam reforming reaction[J]. J Brazilian Chem Soc, 2015,26(1):22-31.  

    22. [22]

      PARK K, LIANG G, JI X, LUO Z P, LI C, CROFT M C, MARKERT J T. Structural and magnetic properties of gold and silica doubly coated γ-Fe2O3 nanoparticles[J]. J Phys Chem C, 2007,111(50):18512-18519. doi: 10.1021/jp0757457

    23. [23]

      MERINO M C G, NASISI L D T, MONTOYA W M, AGUILERA J N U, DE RAPP M E F, LASCALEA G E, VÁZQUEZ P G. Combustion syntheses of Co3O4 powders using different fuels[J]. Procedia Mater Sci, 2015,8:526-534. doi: 10.1016/j.mspro.2015.04.105

    24. [24]

      ZHENG J, CAI J, JIANG F, XU Y, LIU X. Investigation of the highly tunable selectivity to linearα-olefins in Fischer-Tropsch synthesis over silica-supported Co and CoMn catalysts by carburization-reduction pretreatment[J]. Catal Sci Technol, 2017,7(20):4736-4755. doi: 10.1039/C7CY01764B

    25. [25]

      LI Y, DONG C, CHU J, QI J, LI X. Surface molecular imprinting onto fluorescein-coated magnetic nanoparticles via reversible addition fragmentation chain transfer polymerization:A facile three-in-one system for recognition and separation of endocrine disrupting chemicals[J]. Nanoscale, 2011,3(1):280-287. doi: 10.1039/C0NR00614A

    26. [26]

      MUSIĆ S, FILIPOVIĆ-VINCEKOVIĆ N, SEKOVANIĆ L. Precipitation of amorphous SiO2 particles and their properties[J]. Brazilian J Chem Eng, 2011,28(1):89-94. doi: 10.1590/S0104-66322011000100011

    27. [27]

      NABID M R, BIDE Y, ABUALI M. Copper core silver shell nanoparticle-yolk/shell Fe3O4@chitosan-derived carbon nanoparticle composite as an efficient catalyst for catalytic epoxidation in water[J]. RSC Adv, 2014,4(68):35844-35851. doi: 10.1039/C4RA05283H

    28. [28]

      MOGHANIAN H, MOBINIKHALEDI A, BLACKMAN A, SAROUGH-FARAHANI E. Sulfanilic acid-functionalized silica-coated magnetite nanoparticles as an efficient, reusable and magnetically separable catalyst for the solvent-free synthesis of 1-amido-and 1-aminoalkyl-2-naphthols[J]. RSC Adv, 2014,4(54):28176-28185. doi: 10.1039/C4RA03676J

    29. [29]

      RAFIEE H R, FEYZI M, JAFARI F, SAFARI B. Preparation and characterization of promoted Fe-V/SiO2 nanocatalysts for oxidation of alcohols[J]. J Chem, 2013.

    30. [30]

      XIE R, LI D, HOU B, WANG J, JIA L, SUN Y. Silylated Co3O4-m-SiO2 catalysts for Fischer-Tropsch synthesis[J]. Catal Commun, 2011,12(7):589-592. doi: 10.1016/j.catcom.2010.12.013

    31. [31]

      BADOGA S, DALAI A K, ADJAYE J, HU Y. Combined effects of EDTA and heteroatoms (Ti, Zr, and Al) on catalytic activity of SBA-15 supported NiMo catalyst for hydrotreating of heavy gas oil[J]. Ind Eng Chem Res, 2014,53(6):2137-2156. doi: 10.1021/ie400695m

    32. [32]

      BAMBAL A S, GUGGILLA V S, KUGLER E L, GARDNER T H, DADYBURJOR D B. Poisoning of a silica-supported cobalt catalyst due to presence of sulfur impurities in syngas during Fischer-Tropsch synthesis:Effects of chelating agent[J]. Ind Eng Chem Res, 2014,53(14):5846-5857. doi: 10.1021/ie500243h

    33. [33]

      FAN L, FUJIMOTO K. Fischer-Tropsch synthesis in supercritical fluid:Characteristics and application[J]. Appl Catal A:Gen, 1999,186(1/2):343-354.

  • 加载中
    1. [1]

      Kun YangAnhui LiPeng ZhangGuilin LiuLiusai HuangYumeng FoLuyuan YangXiangyang JiJian LiuWeiyu Song . Hierarchical zeolites stabilized cobalt(Ⅱ) as propane dehydrogenation catalyst: Enhanced activity and coke tolerance via alkaline post-treatment. Chinese Chemical Letters, 2025, 36(5): 110663-. doi: 10.1016/j.cclet.2024.110663

    2. [2]

      Peng Wang Daijie Deng Suqin Wu Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199

    3. [3]

      Jiaxuan WangTonghe LiuBingxiang WangZiwei LiYuzhong NiuHou ChenYing Zhang . Synthesis of polyhydroxyl-capped PAMAM dendrimer/silica composites for the adsorption of aqueous Hg(II) and Ag(I). Chinese Chemical Letters, 2024, 35(12): 109900-. doi: 10.1016/j.cclet.2024.109900

    4. [4]

      Yuanjin ChenXianghui ShiDajiang HuangJunnian WeiZhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292

    5. [5]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

    6. [6]

      Yiwen XuChaozheng HeChenxu ZhaoLing Fu . Single-atom Ti doping on S-vacancy two-dimensional CrS2 as a catalyst for ammonia synthesis: A DFT study. Chinese Chemical Letters, 2025, 36(4): 109797-. doi: 10.1016/j.cclet.2024.109797

    7. [7]

      Siting CaiXiang ChenShuli WangXinqin LiaoZhong ChenYue Lin . Silica coating of quantum dots and their applications in optoelectronic fields. Chinese Chemical Letters, 2025, 36(6): 110798-. doi: 10.1016/j.cclet.2024.110798

    8. [8]

      Kun WangTianxue GongYaohuang HuangBoyang HanHanxiao YangPavlo O. DralWeiwei Fang . Bornylimidazo[1,5–a]pyridin-3-ylidene allylic Pd catalyst with optimal electronic and steric properties for synthesis of 3,3′-disubstituted oxindoles. Chinese Chemical Letters, 2025, 36(7): 110539-. doi: 10.1016/j.cclet.2024.110539

    9. [9]

      Mengwei YeQingqing XuHuanhuan JianYiduo DingWenpeng ZhaoChenxiao WangJunya LuShuaipeng FengSiling WangQinfu Zhao . Recent trends of biodegradable mesoporous silica based nanoplatforms for enhanced tumor theranostics. Chinese Chemical Letters, 2025, 36(6): 110221-. doi: 10.1016/j.cclet.2024.110221

    10. [10]

      Hong Yin Zhipeng Yu . Hexavalent iridium catalyst enhances efficiency of hydrogen production. Chinese Journal of Structural Chemistry, 2025, 44(1): 100382-100382. doi: 10.1016/j.cjsc.2024.100382

    11. [11]

      Zhaomin TangQian HeJianren ZhouShuang YanLi JiangYudong WangChenxing YaoHuangzhao WeiKeda YangJiajia Wang . Active-transporting of charge-reversal Cu(Ⅱ)-doped mesoporous silica nanoagents for antitumor chemo/chemodynamic therapy. Chinese Chemical Letters, 2024, 35(7): 109742-. doi: 10.1016/j.cclet.2024.109742

    12. [12]

      Jichun LiZhengren WangYu DengHongxiu YuYonghui DengXiaowei ChengKaiping Yuan . Construction of mesoporous silica-implanted tungsten oxides for selective acetone gas sensing. Chinese Chemical Letters, 2024, 35(11): 110111-. doi: 10.1016/j.cclet.2024.110111

    13. [13]

      Jiaxu WangJinxie ZhangXiuping WangJingying WangLina ChenJiahui CaoWei CaoSiyu LiangPing LuanKe ZhengXiao-Kun OuyangLi GaoXiaowen OuFan ZhangMeitong OuLin Mei . CaCO3-coated hollow mesoporous silica nanoparticles for pH-responsive fungicides release. Chinese Chemical Letters, 2024, 35(12): 109697-. doi: 10.1016/j.cclet.2024.109697

    14. [14]

      Tong ZhangXiaojing LiangLicheng WangShuai WangXiaoxiao LiuYong Guo . An ionic liquid assisted hydrogel functionalized silica stationary phase for mixed-mode liquid chromatography. Chinese Chemical Letters, 2025, 36(1): 109889-. doi: 10.1016/j.cclet.2024.109889

    15. [15]

      Zhefei HuJingwen LiaoJiawen ZhouLulu ZhaoYanjuan LiuYuefei ZhangWei ChenSheng Tang . A new green approach to synthesizing MIP-202@porous silica microspheres for positional isomer/enantiomer/hydrophilic separation. Chinese Chemical Letters, 2025, 36(1): 109985-. doi: 10.1016/j.cclet.2024.109985

    16. [16]

      Junqing WuYiyang ZhangQingqing HongHui YangLifeng ZhangMing ZhangLei Yu . Organometallic modification of silica with europium endowing the fluorescence properties: The key technique for numerical quality monitoring. Chinese Chemical Letters, 2025, 36(4): 110165-. doi: 10.1016/j.cclet.2024.110165

    17. [17]

      Minghui ZhangNa ZhangQian ZhaoChao WangAlexander SteinerJianliang XiaoWeijun Tang . Cobalt pincer complex-catalyzed highly enantioselective hydrogenation of quinoxalines. Chinese Chemical Letters, 2025, 36(4): 110081-. doi: 10.1016/j.cclet.2024.110081

    18. [18]

      Jiayi GuoLiangxiong LingQinwei LuYi ZhouXubiao LuoYanbo Zhou . Degradation of chloroxylenol by CoSx activated peroxomonosulfate: Role of cobalt-sulfur ratio. Chinese Chemical Letters, 2025, 36(4): 110380-. doi: 10.1016/j.cclet.2024.110380

    19. [19]

      Jun-Jie Fang Yun-Peng Xie Xing Lu . Organooxotin and cobalt/manganese heterometallic nanoclusters exhibiting single-molecule magnetism. Chinese Journal of Structural Chemistry, 2025, 44(4): 100515-100515. doi: 10.1016/j.cjsc.2025.100515

    20. [20]

      Qing LiFangyu FuMengyun ZhaoYeqin FengManzhou ChiZichen ZhaoHongjin LvGuo-Yu Yang . Asymmetrically anchoring silver alkynyl cluster to the cobalt-containing polyoxometalate. Chinese Chemical Letters, 2025, 36(7): 110090-. doi: 10.1016/j.cclet.2024.110090

Metrics
  • PDF Downloads(8)
  • Abstract views(480)
  • HTML views(37)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return