Citation: Yuan An, Tan Long, Liu Li, Ying Jin, Tang Hao, Sun Runguang. Research Progress of Li2S-P2S5 Electrolytes and Their Application in Solid-State Lithium-Ion Batteries[J]. Chemistry, ;2019, 82(8): 706-716. shu

Research Progress of Li2S-P2S5 Electrolytes and Their Application in Solid-State Lithium-Ion Batteries

  • Corresponding author: Tang Hao, htang@ncu.edu.cn
  • Received Date: 28 February 2019
    Accepted Date: 8 May 2019

Figures(5)

  • All-solid-state lithium-ion batteries have been widely used in portable electronic devices due to their advantages of good safety performance, high energy density, wide working-temperature range, etc. The solid electrolytes are the key material of all-solid-state lithium-ion batteries. Among various electrolytes, the sulfide-based materials have the characteristics of high ionic conductivity, wide electrochemical window, low grain boundary resistance and easy film formation, and is considered to be the most promising electrolyte in all-solid-state batteries. In this paper, we focused on the recent progress in the solid electrolytes with respect to the preparation, characterization and modification of Li2S-P2S5 electrolytes, and stability/compatibility of the interface between the solid electrolyte and the electrode. Moreover, the performance of these solid electrolyte related all-solid-state lithium-ion batteries are also reviewed.
  • 加载中
    1. [1]

      N Armand, J M Tarascon. Nature, 2008, 451:652~657. 

    2. [2]

      P Simon, Y Gogotsi. Nat. Mater., 2008, 7:845~854. 

    3. [3]

      M Y Gao, C C Shih, S Y Pan et al. J. Mater. Chem. A, 2018, 6(42):20546~20563. 

    4. [4]

      M Tatsumisago, A Hayashi. Int. J. Appl. Glass Sci., 2014, 5(3):226~235. 

    5. [5]

      J Kim, Y Yoon, J Lee et al. J. Power Sources, 2011, 196:6920~6923. 

    6. [6]

      N Kamaya, K Homma, Y Yamakawa et al. Nat. Mater., 2011, 10:682~686. 

    7. [7]

      M Tatsumisago, K Hirai, T Minami et al. J. Ceram. Soc. Jpn., 1993, 101(11):1315.

    8. [8]

      S Kondo, K Takada, Y Yamamura. Solid State Ionics, 1992, 53~56:1183~1186. 

    9. [9]

      M Murayama, N Sonoyama, A Yamada et al. Solid State Ionics, 2004, 170:173~180. 

    10. [10]

      K Minami, F Mizuno, A Hayashi et al. Solid State Ionics, 2007, 178:837~841. 

    11. [11]

      Z Liu, Y Tang, Y Wang et al. J. Power Sources, 2014, 260:264~267. 

    12. [12]

      X Sun, Y Sun, F Cao et al. J. Alloys Compd., 2017, 727:1136~1141. 

    13. [13]

      K Minami, A Hayashi, M Tatsumisago. Solid State Ionics, 2008, 179:1282~1285. 

    14. [14]

      R Kanno, M Murayama. J. Electrochem. Soc., 2001, 148:A742~A746. 

    15. [15]

      S Chen, D Xie, G Liu et al. Energy Storage Mater., 2018, 14:58~74. 

    16. [16]

      A Hayashi, K Minami, S Ujiie et al. J. Non-Crystal Solids, 2010, 356:2670~2673. 

    17. [17]

      M Tasumisago, F Mizuno, A Hayashi. J. Power Sources, 2006, 159:193~199. 

    18. [18]

      F Mizuno, A Hayashi, K Tadanaga et al. Solid State Ionics, 2006, 177:2721~2725. 

    19. [19]

      S Ito, M Nakakita, Y Aihara et al. J. Power Sources, 2014, 271:342~345. 

    20. [20]

      R C Xu, X H Xia, Z J Yao et al. Electrochim. Acta, 2016, 219:235~240. 

    21. [21]

      S Teragawa, K Aso, K Tadanaga et al. J. Mater. Chem. A, 2014, 2:5095~5099. 

    22. [22]

      S Teragawa, K Aso, K Tadanaga et al. J. Power Sources, 2014, 248:939~942. 

    23. [23]

      X Y Yao, D Liu, C S Wang et al. Nano Lett., 2016, 16:7148~7154. 

    24. [24]

      M Calpa, N C R Navarro, A Miura et al. RSC Adv., 2017, 7:46499~46504. 

    25. [25]

      N H H Phuc, M Totani, K Morikawa et al. Solid State Ionics, 2016, 288:240~243. 

    26. [26]

      S Yubuchi, S Teragawa, K Aso et al. J. Power Sources, 2015, 293:941~945. 

    27. [27]

      T Ohtomo, A Hayashi, M Tatsumisago et al. J. Non-Cryst. Solids, 2013, 364:57~61. 

    28. [28]

      T Ohtomo, A Hayashi, M Tatsumisago et al. J. Solid State Electrochem., 2013, 17:2551~2557. 

    29. [29]

      S Ujiie, A Hayashi, M Tatsumisago. Solid State Ionics, 2012, 211:42~45. 

    30. [30]

      S Ujiie, A Hayashi, M Tatsumisago. J. Solid State Electrochem., 2013, 17:675~680. 

    31. [31]

      A Hayashi, H Muramatsu, T Ohtomo. J. Mater. Chem. A, 2013, 1:6320~6326. 

    32. [32]

      F Mizuno, T Ohtomo, A Hayashi et al. Solid State Ionics, 2006, 177:2753~2757. 

    33. [33]

      R Xu, X Xia, X Wang et al. J. Mater. Chem., 2017, A5:2829~2834. 

    34. [34]

      Y C Tao, S Chen, D Liu et al. J. Electrochem. Soc., 2016, 163(2):A96~A101. 

    35. [35]

      Y Zhang, K Chen, Y Shen et al. Solid State Ionics, 2017, 305:1~6. 

    36. [36]

      Y Sun, K Suzuki, K Hara et al. J. Power Sources, 2016, 324:798~803. 

    37. [37]

      Z Q Liu, Y F Tang, X J Lyu et al. Ceram. Int., 2014, 40:15497~15501. 

    38. [38]

      P Lu, F Ding, Z Xu et al. J. Power Sources, 2017, 356:163~171. 

    39. [39]

      J E Trevey, Y S Jung, S Lee. Electrochim. Acta, 2011, 56:4243~4247. 

    40. [40]

      S Ujiie, T Inagaki, A Hayashi et al. Solid State Ionics, 2014, 263:57~61. 

    41. [41]

      K Minami, A Hayashi, S Ujiie et al. Solid State Ionics, 2011, 192:122~125. 

    42. [42]

      M Eom, S Choi, S Son et al. J. Power Sources, 2016, 331:26~31. 

    43. [43]

      T Ohtomo, A Hayashi, M Tatsumisago et al. Electrochemistry, 2013, 81(6):428~431. 

    44. [44]

      Y Ooura, N Machida, M Naito et al. Solid State Ionics, 2012, 225:350~353. 

    45. [45]

      K Minami, A Hayashi, M Tatsumisago. J. Non-Cryst. Solids, 2010, 356:2666~2669. 

    46. [46]

      F Mizuno, A Hayashi, K Tadanaga et al. J. Electrochem. Soc., 2005, 152(8):A1499~A1503. 

    47. [47]

      J K Hong, J H Lee, S M Oh. J. Power Sources, 2002, 111:90~96. 

    48. [48]

      J Kim, M Eom, S Noh et al. Electron. Mater. Lett., 2012, 8(2):209~213. 

    49. [49]

      Y Fujii, A Miura, N C R Navarro et al. Electrochim. Acta, 2017, 241:370~374. 

    50. [50]

      J E Trevey, Y S Jung, S H Lee. J. Power Sources, 2010, 195:4984~4989. 

    51. [51]

      G Oh, M Hirayama, O Kwon et al. Chem. Mater., 2016, 28:2634~2640. 

    52. [52]

      J Kim, M Kim, S Noth et al. Ceram. Int., 2016, 42:2140~2146. 

    53. [53]

       

    54. [54]

      G Peng, X Yao, H Wan et al. J. Power Sources, 2016, 307:724~730. 

    55. [55]

      A Sakuda, H Kitaura, A Hayashi et al. Electrochem. Solid-State Lett., 2008, 11(1):A1~A3. 

    56. [56]

      Y Sakurai, A Sakuda, A Hayashi et al. Solid State Ionics, 2011, 182:59~63. 

    57. [57]

      A Sakuda, N Nakamoto, H Kitaura et al. J. Mater. Chem., 2012, 22:15247~15254. 

    58. [58]

      K Takada. IEICE Technical Report, 2008, 107:43~47.

    59. [59]

      N Ohta, K Takada, K Zhang et al. Adv. Mater., 2006, 18(17):2226~2229. 

    60. [60]

      M Sakuma, K Suzuki, M Hirayama et al. Solid State Ionics, 2016, 285:101~105. 

    61. [61]

      M Ogawa, R Kanda, K Yoshida et al. J. Power Sources, 2012, 205:487~490. 

    62. [62]

      Y Seino, T Ota, K Takada et al. Energy Environ. Sci., 2014, 7(2):627~631. 

    63. [63]

       

    64. [64]

      P G Bruce, C A Vincent. J. Electroanal. Chem., 1987, 225:1~17. 

    65. [65]

      I I Olsen, R Koksbang, E Skou. Electrochim. Acta, 1995, 40:1701~1706. 

    66. [66]

      P R Sorensen, T Jacobesn. Electrochim. Acta, 1982, 27:1671~1675. 

  • 加载中
    1. [1]

      Xuechen HuQiuying XiaFan YueXinyi HeZhenghao MeiJinshi WangHui XiaXiaodong Huang . Electrochemical Characteristics of LiNbO3 Anode Film and Its Applications in All-Solid-State Thin-Film Lithium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2309046-0. doi: 10.3866/PKU.WHXB202309046

    2. [2]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    3. [3]

      Mingyang MenJinghua WuGaozhan LiuJing ZhangNini ZhangXiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019

    4. [4]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    5. [5]

      Aoyu HuangJun XuYu HuangGui ChuMao WangLili WangYongqi SunZhen JiangXiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2408007-0. doi: 10.3866/PKU.WHXB202408007

    6. [6]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    7. [7]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    8. [8]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    9. [9]

      Xintong ZhuBin CaoChong YanCheng TangAibing ChenQiang Zhang . Advances in coating strategies for graphite anodes in lithium-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100096-0. doi: 10.1016/j.actphy.2025.100096

    10. [10]

      Jingshuo ZhangYue ZhaiZiyun ZhaoJiaxing HeWei WeiJing XiaoShichao WuQuan-Hong Yang . Research Progress of Functional Binders in Silicon-Based Anodes for Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306006-0. doi: 10.3866/PKU.WHXB202306006

    11. [11]

      Da WangXiaobin YinJianfang WuYaqiao LuoSiqi Shi . All-Solid-State Lithium Cathode/Electrolyte Interfacial Resistance: From Space-Charge Layer Model to Characterization and Simulation. Acta Physico-Chimica Sinica, 2024, 40(7): 2307029-0. doi: 10.3866/PKU.WHXB202307029

    12. [12]

      Zhi DouHuiyu DuanYixi LinYinghui XiaMingbo ZhengZhenming Xu . High-Throughput Screening Lithium Alloy Phases and Investigation of Ion Transport for Solid Electrolyte Interphase Layer. Acta Physico-Chimica Sinica, 2024, 40(3): 2305039-0. doi: 10.3866/PKU.WHXB202305039

    13. [13]

      Jiaxuan ZuoKun ZhangJing WangXifei Li . Nucleation Regulation and Mechanism of Precursors for Nickel Cobalt Manganese-based Cathode Materials in Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100009-0. doi: 10.3866/PKU.WHXB202404042

    14. [14]

      Siyu ZhangKunhong GuBing'an LuJunwei HanJiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-0. doi: 10.3866/PKU.WHXB202309028

    15. [15]

      Qi LiPingan LiZetong LiuJiahui ZhangHao ZhangWeilai YuXianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030

    16. [16]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    17. [17]

      Ying LiYushen ZhaoKai ChenXu LiuTingfeng YiLi-Feng Chen . Rational Design of Cross-Linked N-Doped C-Sn Nanofibers as Free-Standing Electrodes towards High-Performance Li-Ion Battery Anodes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305007-0. doi: 10.3866/PKU.WHXB202305007

    18. [18]

      Jiandong LiuZhijia ZhangKamenskii MikhailVolkov FilippEliseeva SvetlanaJianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 2308048-0. doi: 10.3866/PKU.WHXB202308048

    19. [19]

      Fan YangZheng LiuDa WangKwunNam HuiYelong ZhangZhangquan Peng . Preparation and Properties of P-Bi2Te3/MXene Superstructure-based Anode for Potassium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2303006-0. doi: 10.3866/PKU.WHXB202303006

    20. [20]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

Metrics
  • PDF Downloads(13)
  • Abstract views(1440)
  • HTML views(200)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return