Effect of citric acid addition on MoO3/CeO2-Al2O3 catalyst for sulfur-resistant methanation
- Corresponding author: WANG Bao-wei, wangbw@tju.edu.cn MA Xin-bin, xbma@tju.edu.cn.
Citation:
WANG Bao-wei, MENG Da-jun, WANG Wei-han, LI Zhen-hua, MA Xin-bin. Effect of citric acid addition on MoO3/CeO2-Al2O3 catalyst for sulfur-resistant methanation[J]. Journal of Fuel Chemistry and Technology,
;2016, 44(12): 1479-1484.
KUSTOV A L, FREY A M, LARSEN K E, JOHANNESSEN T, NØRSKOV J K, CHRISTENSEN C H. CO methanation over supported bimetallic Ni-Fe catalysts:From computational studies towards catalyst optimization[J]. Appl Catal A:Gen, 2007,320(3):98-104.
KOPYSCINSKI J, SCHILDHAUER T J, BIOLLAZ S M A. Production of synthetic natural gas (SNG) from coal and dry biomass-A technology review from 1950 to 2009[J]. Fuel, 2010,89(8):1763-1783. doi: 10.1016/j.fuel.2010.01.027
HACATOGLU K, JAMES MCLELLAN P, LAYZELL D B. Production of bio-synthetic natural gas in Canada[J]. Environ Sci Technol, 2010,44(6):2183-2188. doi: 10.1021/es901561g
ZAHRADNIK R L, GLENN R A. Direct methanation of coal[J]. Fuel, 1971,50(1):77-90. doi: 10.1016/S0016-2361(71)81022-0
MOELLER F W, ROBERTS H, BRITZ B. Methanation of coal gas for SNG[J]. Hydrocarbon Process, 1974,53(4):69-74.
VEEN G V, KRUISSINK E C, DOESBURG E B M, ROSS J R H, REIJEN L L V. The effect of preparation conditions on the activity and stability of copreciptitated Ni/Al2O3 catalysts for the methanation of carbon monoxide[J]. React Kinet Catal Lett, 1978,9(2):143-148. doi: 10.1007/BF02068914
GALLAGHER J E, EUKER C A. Catalytic coal gasification for SNG manufacture[J]. Int J Energy Res, 1980,4(2):137-147. doi: 10.1002/(ISSN)1099-114X
FRANK A J, DICK H A, GORAL J, NELSON A J, GRÄTZEL M. MoS2-catalyzed methanation of CO with H2S[J]. J Catal, 1990,126(2):674-676. doi: 10.1016/0021-9517(90)90030-N
CHRISTENSEN J M, MORTENSEN P M, TRANE R, JENSEN P A, JENSEN A D. Effects of H2S and process conditions in the synthesis of mixed alcohols from syngas over alkali promoted cobalt-molybdenum sulfide[J]. Appl Catal A:Gen, 2009,366(1):29-43. doi: 10.1016/j.apcata.2009.06.034
KIM M Y, HA S B, DONG J K, BYUN C, PARK E D. CO methanation over supported Mo catalysts in the presence of H2S[J]. Catal Commun, 2013,35(17):68-71.
SASAKI T, SUZUKI T. Sulfide molybdenum catalysts for water-gas shift reaction:Influence of the kind of promoters and supports to generate MoS2[J]. Appl Catal A:Gen, 2014,484(10):79-83.
WANG B W, DING G Z, SHANG Y G, LV J, WANG H Y, WANG E D, LI Z H, MA X B, QIN S D, SUN Q. Effects of MoO3 loading and calcination temperature on the activity of the sulphur-resistant methanation catalyst MoO3/γ-Al2O3[J]. Appl Catal A:Gen, 2012,431-432:144-150. doi: 10.1016/j.apcata.2012.04.029
TRIKI M, KSIBI Z, GHORBEL A, MEDINA F. Preparation and characterization of CeO2-Al2O3 aerogels supported ruthenium for catalytic wet air oxidation of p-hydroxybenzoic acid[J]. J Sol-Gel Sci Technol, 2011,59(1):1-6. doi: 10.1007/s10971-011-2452-5
DAMYANOVA S, PEREZ C A, SCHMAL M, BUENO J M C. Characterization of ceria-coated alumina carrier[J]. Appl Catal A:Gen, 2002,234(1/2):271-282.
YAO H C, YAO Y F Y. Ceria in automotive exhaust catalysts:I.Oxygen storage[J]. J Catal, 1984,86(2):254-265. doi: 10.1016/0021-9517(84)90371-3
ZHUANG Q, QIN Y, CHANG L. Promoting effect of cerium oxide in supported nickel catalyst for hydrocarbon steam-reforming[J]. Appl Catal, 1991,70(1):1-8. doi: 10.1016/S0166-9834(00)84149-4
WANG B W, SHANG Y G, DING G Z, LÜ J, WANG H Y, WANG E D, LI Z H, MA X B, QIN S D, SUN Q. Effect of the ceria-alumina composite support on the Mo-based catalyst's sulfur-resistant activity for the synthetic natural gas process[J]. Reac Kinet,Mech Cat, 2012,106(2):495-506. doi: 10.1007/s11144-012-0452-2
CATTANEO R, WEBER T, SHIDO T, PRINS R. A quick EXAFS study of the sulfidation of NiMo/SiO2 hydrotreating catalysts prepared with chelating ligands[J]. J Catal, 2000,191(1):225-236. doi: 10.1006/jcat.1999.2784
IWAMOTO R, KAGAMI N, ⅡNO A. Effect of polyethylene glycol addition on hydrodesulfurization activity over CoO-MoO3/Al2O3 catalyst[J]. J Jpn Pet Inst, 2005,48(4):237-242. doi: 10.1627/jpi.48.237
RINALDI N, KUBOTA T, OKAMOTO Y. Effect of citric acid addition on Co-Mo/B2O3/Al2O3 catalysts prepared by a post-treatment method[J]. Ind Eng Chem Res, 2009,48(23):10414-10424. doi: 10.1021/ie9008343
LI H F, LI M F, CHU Y, LIU F, NIE H. Essential role of citric acid in preparation of efficient NiW/Al2O3 HDS catalysts[J]. Appl Catal A:Gen, 2011,403(1/2):75-82.
CASTILLO-VILLALÓN P, RAMIREZ J, VARGAS-LUCIANO J A. Analysis of the role of citric acid in the preparation of highly active HDS catalysts[J]. J Catal, 2014,320(1):127-136.
BERGWERFF J A, JANSEN M, LELIVELD B G, VISSER T, JONG K P D, WECKHUYSEN B M. Influence of the preparation method on the hydrotreating activity of MoS2/Al2O3 extrudates:A Raman microspectroscopy study on the genesis of the active phase[J]. J Catal, 2006,243(2):292-302. doi: 10.1016/j.jcat.2006.07.022
RINALDI N, KUBOTA T, OKAMOTO Y. Effect of citric acid addition on the hydrodesulfurization activity of MoO3/Al2O3 catalysts[J]. Appl Catal A:Gen, 2010,374(1/2):228-236.
WANG R, SMITH K J. Hydrodesulfurization of 4,6-dimethyldibenzothiophene over high surface area metal phosphides[J]. Appl Catal A:Gen, 2009,361(1):18-25.
SURESH R, PONNUSWAMY V, MARIAPPAN R. Effect of annealing temperature on the microstructural,optical and electrical properties of CeO2 nanoparticles by chemical precipitation method[J]. Appl Surf Sci, 2013,273(273):457-464.
LIANG C X, LI X Y, QU Z P, TADE M, LIU S M. The role of copper species on Cu/γ-Al2O3 catalysts for NH3-SCO reaction[J]. Appl Surf Sci, 2012,258(8):3738-3743. doi: 10.1016/j.apsusc.2011.12.017
MESTL G, SRINIVASAN T K K, KNOEZINGER H. Mechanically activated MoO3.3.Characterization by vibrational spectroscopy[J]. Langmuir, 2002,11(10):3795-3804.
MESTL G, SRINIVASAN T K K. Raman spectroscopy of monolayer-type catalysts:Supported molybdenum oxides[J]. Cat Rev, 1998,40(4):451-570. doi: 10.1080/01614949808007114
ABERUAGBA F, KUMAR M, MURALIDHAR G, SHARMA L D. Characterization of Al2O3-ZrO2 mixed oxide supported Mo hydrotreating catalyst[J]. Pet Sci Technol, 2004,22(9):1287-1298.
ZAKI M I, VIELHABER B, KNOEZINGER H. Low-temperature carbon monoxide adsorption and state of molybdena supported on alumina,titania,ceria,and zirconia.An infrared spectroscopic investigation[J]. J Phys Chem, 1986,90(14):3176-3183. doi: 10.1021/j100405a026
BERIT H, NØRSKOV J K, HENRIK T E. A density functional study of the chemical differences between Type I and Type Ⅱ MoS2-based structures in hydrotreating catalysts[J]. J Phys Chem B, 2005,109(6):2245-2253. doi: 10.1021/jp048842y
Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440
Xiutao Xu , Chunfeng Shao , Jinfeng Zhang , Zhongliao Wang , Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031
Peng Li , Yuanying Cui , Zhongliao Wang , Graham Dawson , Chunfeng Shao , Kai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-. doi: 10.1016/j.actphy.2025.100065
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
Jinglin CHENG , Xiaoming GUO , Tao MENG , Xu HU , Liang LI , Yanzhe WANG , Wenzhu HUANG . NiAlNd catalysts for CO2 methanation derived from the layered double hydroxide precursor. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1592-1602. doi: 10.11862/CJIC.20240152
Linshan Peng , Qihang Peng , Tianxiang Jin , Zhirong Liu , Yong Qian . Highly efficient capture of thorium ion by citric acid-modified chitosan gels from aqueous solution. Chinese Chemical Letters, 2024, 35(5): 108891-. doi: 10.1016/j.cclet.2023.108891
Gang Lang , Jing Feng , Bo Feng , Junlan Hu , Zhiling Ran , Zhiting Zhou , Zhenju Jiang , Yunxiang He , Junling Guo . Supramolecular phenolic network-engineered C–CeO2 nanofibers for simultaneous determination of isoniazid and hydrazine in biological fluids. Chinese Chemical Letters, 2024, 35(6): 109113-. doi: 10.1016/j.cclet.2023.109113
Jia Chen , Yun Liu , Zerong Long , Yan Li , Hongdeng Qiu . Colorimetric detection of α-glucosidase activity using Ni-CeO2 nanorods and its application to potential natural inhibitor screening. Chinese Chemical Letters, 2024, 35(9): 109463-. doi: 10.1016/j.cclet.2023.109463
Zhi Zhu , Xiaohan Xing , Qi Qi , Wenjing Shen , Hongyue Wu , Dongyi Li , Binrong Li , Jialin Liang , Xu Tang , Jun Zhao , Hongping Li , Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194
Simin Wei , Yaqing Yang , Junjie Li , Jialin Wang , Jinlu Tang , Ningning Wang , Zhaohui Li . The Mn/Yb/Er triple-doped CeO2 nanozyme with enhanced oxidase-like activity for highly sensitive ratiometric detection of nitrite. Chinese Chemical Letters, 2024, 35(6): 109114-. doi: 10.1016/j.cclet.2023.109114
Xiangyang Ji , Yishuang Chen , Peng Zhang , Shaojia Song , Jian Liu , Weiyu Song . Boosting the first C–H bond activation of propane on rod-like V/CeO2 catalyst by photo-assisted thermal catalysis. Chinese Chemical Letters, 2025, 36(5): 110719-. doi: 10.1016/j.cclet.2024.110719
Jie ZHANG , Xin LIU , Zhixin LI , Yuting PEI , Yuqi YANG , Huimin LI , Zhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310
Xingmin Chen , Yunyun Wu , Yao Tang , Peishen Li , Shuai Gao , Qiang Wang , Wen Liu , Sihui Zhan . Construction of Z-scheme Cu-CeO2/BiOBr heterojunction for enhanced photocatalytic degradation of sulfathiazole. Chinese Chemical Letters, 2024, 35(7): 109245-. doi: 10.1016/j.cclet.2023.109245
Hongwei Ding , Jingjing Yang , Yongchen Shuai , Di Wei , Xueliang Liu , Guiying Li , Lin Jin , Jianliang Shen . In situ preparation of tannin-mediated CeO2@CuS nanocomposites for multimodal wound therapy. Chinese Chemical Letters, 2025, 36(6): 110286-. doi: 10.1016/j.cclet.2024.110286
Shuanglin TIAN , Tinghong GAO , Yutao LIU , Qian CHEN , Quan XIE , Qingquan XIAO , Yongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482
Renshu Huang , Jinli Chen , Xingfa Chen , Tianqi Yu , Huyi Yu , Kaien Li , Bin Li , Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171
Hanqing Zhang , Xiaoxia Wang , Chen Chen , Xianfeng Yang , Chungli Dong , Yucheng Huang , Xiaoliang Zhao , Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089
Xubin Qian , Lei Xu , Xu Ge , Zhun Liu , Cheng Fang , Jianbing Wang , Junfeng Niu . Can perfluorooctanoic acid be effectively degraded using β-PbO2 reactive electrochemical membrane?. Chinese Chemical Letters, 2024, 35(7): 109218-. doi: 10.1016/j.cclet.2023.109218
Di Wang , Qing-Song Chen , Yi-Ran Lin , Yun-Xin Hou , Wei Han , Juan Yang , Xin Li , Zhen-Hai Wen . Tuning strategies and electrolyzer design for Bi-based nanomaterials towards efficient CO2 reduction to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(8): 100346-100346. doi: 10.1016/j.cjsc.2024.100346
■: CA/Ce=0; ●: CA/Ce=0.5; ▲: CA/Ce=1;