Citation: WANG Bao-wei, MENG Da-jun, WANG Wei-han, LI Zhen-hua, MA Xin-bin. Effect of citric acid addition on MoO3/CeO2-Al2O3 catalyst for sulfur-resistant methanation[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(12): 1479-1484. shu

Effect of citric acid addition on MoO3/CeO2-Al2O3 catalyst for sulfur-resistant methanation

  • Corresponding author: WANG Bao-wei, wangbw@tju.edu.cn MA Xin-bin, xbma@tju.edu.cn.
  • Received Date: 30 July 2016
    Revised Date: 29 September 2016

    Fund Project: The project was supported by the National High Technology Research and Development Program of China  863计划,2015AA050504

Figures(4)

  • Citric acid hold great promise to improve the Mo-based catalyst performance for hydrogenation reaction applications. MoO3/CeO2-Al2O3 catalysts were prepared by impregnation method with adding citric acid into CeO2-Al2O3 composite supports and tested for sulfur resistant methanation. The syngas methanation activity increased with the increase of citric acid additive amount, and CO conversion could reach up 60% when the molar ratio of citric acid to Ce was 3. The prepared catalysts were characterized by BET, H2-TPR, XRD and XPS. The increased catalytic performance was mainly attributed to the increased amount of Ce species on the surface of catalysts which could decreased the interaction force between MoO3 and CeO2-Al2O3 supports. Additionally, the increased specific surface of CeO2-Al2O3 composite support was also in favor of catalytic performance.
  • 加载中
    1. [1]

      KUSTOV A L, FREY A M, LARSEN K E, JOHANNESSEN T, NØRSKOV J K, CHRISTENSEN C H. CO methanation over supported bimetallic Ni-Fe catalysts:From computational studies towards catalyst optimization[J]. Appl Catal A:Gen, 2007,320(3):98-104.  

    2. [2]

      KOPYSCINSKI J, SCHILDHAUER T J, BIOLLAZ S M A. Production of synthetic natural gas (SNG) from coal and dry biomass-A technology review from 1950 to 2009[J]. Fuel, 2010,89(8):1763-1783. doi: 10.1016/j.fuel.2010.01.027

    3. [3]

      HACATOGLU K, JAMES MCLELLAN P, LAYZELL D B. Production of bio-synthetic natural gas in Canada[J]. Environ Sci Technol, 2010,44(6):2183-2188. doi: 10.1021/es901561g

    4. [4]

      ZAHRADNIK R L, GLENN R A. Direct methanation of coal[J]. Fuel, 1971,50(1):77-90. doi: 10.1016/S0016-2361(71)81022-0

    5. [5]

      MOELLER F W, ROBERTS H, BRITZ B. Methanation of coal gas for SNG[J]. Hydrocarbon Process, 1974,53(4):69-74.  

    6. [6]

      VEEN G V, KRUISSINK E C, DOESBURG E B M, ROSS J R H, REIJEN L L V. The effect of preparation conditions on the activity and stability of copreciptitated Ni/Al2O3 catalysts for the methanation of carbon monoxide[J]. React Kinet Catal Lett, 1978,9(2):143-148. doi: 10.1007/BF02068914

    7. [7]

      GALLAGHER J E, EUKER C A. Catalytic coal gasification for SNG manufacture[J]. Int J Energy Res, 1980,4(2):137-147. doi: 10.1002/(ISSN)1099-114X

    8. [8]

      FRANK A J, DICK H A, GORAL J, NELSON A J, GRÄTZEL M. MoS2-catalyzed methanation of CO with H2S[J]. J Catal, 1990,126(2):674-676. doi: 10.1016/0021-9517(90)90030-N

    9. [9]

      CHRISTENSEN J M, MORTENSEN P M, TRANE R, JENSEN P A, JENSEN A D. Effects of H2S and process conditions in the synthesis of mixed alcohols from syngas over alkali promoted cobalt-molybdenum sulfide[J]. Appl Catal A:Gen, 2009,366(1):29-43. doi: 10.1016/j.apcata.2009.06.034

    10. [10]

      KIM M Y, HA S B, DONG J K, BYUN C, PARK E D. CO methanation over supported Mo catalysts in the presence of H2S[J]. Catal Commun, 2013,35(17):68-71.

    11. [11]

      SASAKI T, SUZUKI T. Sulfide molybdenum catalysts for water-gas shift reaction:Influence of the kind of promoters and supports to generate MoS2[J]. Appl Catal A:Gen, 2014,484(10):79-83.

    12. [12]

      WANG B W, DING G Z, SHANG Y G, LV J, WANG H Y, WANG E D, LI Z H, MA X B, QIN S D, SUN Q. Effects of MoO3 loading and calcination temperature on the activity of the sulphur-resistant methanation catalyst MoO3/γ-Al2O3[J]. Appl Catal A:Gen, 2012,431-432:144-150. doi: 10.1016/j.apcata.2012.04.029

    13. [13]

      TRIKI M, KSIBI Z, GHORBEL A, MEDINA F. Preparation and characterization of CeO2-Al2O3 aerogels supported ruthenium for catalytic wet air oxidation of p-hydroxybenzoic acid[J]. J Sol-Gel Sci Technol, 2011,59(1):1-6. doi: 10.1007/s10971-011-2452-5

    14. [14]

      DAMYANOVA S, PEREZ C A, SCHMAL M, BUENO J M C. Characterization of ceria-coated alumina carrier[J]. Appl Catal A:Gen, 2002,234(1/2):271-282.  

    15. [15]

      YAO H C, YAO Y F Y. Ceria in automotive exhaust catalysts:I.Oxygen storage[J]. J Catal, 1984,86(2):254-265. doi: 10.1016/0021-9517(84)90371-3

    16. [16]

      ZHUANG Q, QIN Y, CHANG L. Promoting effect of cerium oxide in supported nickel catalyst for hydrocarbon steam-reforming[J]. Appl Catal, 1991,70(1):1-8. doi: 10.1016/S0166-9834(00)84149-4

    17. [17]

      WANG B W, SHANG Y G, DING G Z, LÜ J, WANG H Y, WANG E D, LI Z H, MA X B, QIN S D, SUN Q. Effect of the ceria-alumina composite support on the Mo-based catalyst's sulfur-resistant activity for the synthetic natural gas process[J]. Reac Kinet,Mech Cat, 2012,106(2):495-506. doi: 10.1007/s11144-012-0452-2

    18. [18]

      CATTANEO R, WEBER T, SHIDO T, PRINS R. A quick EXAFS study of the sulfidation of NiMo/SiO2 hydrotreating catalysts prepared with chelating ligands[J]. J Catal, 2000,191(1):225-236. doi: 10.1006/jcat.1999.2784

    19. [19]

      IWAMOTO R, KAGAMI N, ⅡNO A. Effect of polyethylene glycol addition on hydrodesulfurization activity over CoO-MoO3/Al2O3 catalyst[J]. J Jpn Pet Inst, 2005,48(4):237-242. doi: 10.1627/jpi.48.237

    20. [20]

      RINALDI N, KUBOTA T, OKAMOTO Y. Effect of citric acid addition on Co-Mo/B2O3/Al2O3 catalysts prepared by a post-treatment method[J]. Ind Eng Chem Res, 2009,48(23):10414-10424. doi: 10.1021/ie9008343

    21. [21]

      LI H F, LI M F, CHU Y, LIU F, NIE H. Essential role of citric acid in preparation of efficient NiW/Al2O3 HDS catalysts[J]. Appl Catal A:Gen, 2011,403(1/2):75-82.  

    22. [22]

      CASTILLO-VILLALÓN P, RAMIREZ J, VARGAS-LUCIANO J A. Analysis of the role of citric acid in the preparation of highly active HDS catalysts[J]. J Catal, 2014,320(1):127-136.  

    23. [23]

      BERGWERFF J A, JANSEN M, LELIVELD B G, VISSER T, JONG K P D, WECKHUYSEN B M. Influence of the preparation method on the hydrotreating activity of MoS2/Al2O3 extrudates:A Raman microspectroscopy study on the genesis of the active phase[J]. J Catal, 2006,243(2):292-302. doi: 10.1016/j.jcat.2006.07.022

    24. [24]

      RINALDI N, KUBOTA T, OKAMOTO Y. Effect of citric acid addition on the hydrodesulfurization activity of MoO3/Al2O3 catalysts[J]. Appl Catal A:Gen, 2010,374(1/2):228-236.

    25. [25]

      WANG R, SMITH K J. Hydrodesulfurization of 4,6-dimethyldibenzothiophene over high surface area metal phosphides[J]. Appl Catal A:Gen, 2009,361(1):18-25.  

    26. [26]

      SURESH R, PONNUSWAMY V, MARIAPPAN R. Effect of annealing temperature on the microstructural,optical and electrical properties of CeO2 nanoparticles by chemical precipitation method[J]. Appl Surf Sci, 2013,273(273):457-464.  

    27. [27]

      LIANG C X, LI X Y, QU Z P, TADE M, LIU S M. The role of copper species on Cu/γ-Al2O3 catalysts for NH3-SCO reaction[J]. Appl Surf Sci, 2012,258(8):3738-3743. doi: 10.1016/j.apsusc.2011.12.017

    28. [28]

      MESTL G, SRINIVASAN T K K, KNOEZINGER H. Mechanically activated MoO3.3.Characterization by vibrational spectroscopy[J]. Langmuir, 2002,11(10):3795-3804.

    29. [29]

      MESTL G, SRINIVASAN T K K. Raman spectroscopy of monolayer-type catalysts:Supported molybdenum oxides[J]. Cat Rev, 1998,40(4):451-570. doi: 10.1080/01614949808007114

    30. [30]

      ABERUAGBA F, KUMAR M, MURALIDHAR G, SHARMA L D. Characterization of Al2O3-ZrO2 mixed oxide supported Mo hydrotreating catalyst[J]. Pet Sci Technol, 2004,22(9):1287-1298.

    31. [31]

      ZAKI M I, VIELHABER B, KNOEZINGER H. Low-temperature carbon monoxide adsorption and state of molybdena supported on alumina,titania,ceria,and zirconia.An infrared spectroscopic investigation[J]. J Phys Chem, 1986,90(14):3176-3183. doi: 10.1021/j100405a026

    32. [32]

      BERIT H, NØRSKOV J K, HENRIK T E. A density functional study of the chemical differences between Type I and Type Ⅱ MoS2-based structures in hydrotreating catalysts[J]. J Phys Chem B, 2005,109(6):2245-2253. doi: 10.1021/jp048842y

  • 加载中
    1. [1]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    2. [2]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    3. [3]

      Peng Li Yuanying Cui Zhongliao Wang Graham Dawson Chunfeng Shao Kai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-. doi: 10.1016/j.actphy.2025.100065

    4. [4]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    5. [5]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    6. [6]

      Jinglin CHENGXiaoming GUOTao MENGXu HULiang LIYanzhe WANGWenzhu HUANG . NiAlNd catalysts for CO2 methanation derived from the layered double hydroxide precursor. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1592-1602. doi: 10.11862/CJIC.20240152

    7. [7]

      Linshan PengQihang PengTianxiang JinZhirong LiuYong Qian . Highly efficient capture of thorium ion by citric acid-modified chitosan gels from aqueous solution. Chinese Chemical Letters, 2024, 35(5): 108891-. doi: 10.1016/j.cclet.2023.108891

    8. [8]

      Gang LangJing FengBo FengJunlan HuZhiling RanZhiting ZhouZhenju JiangYunxiang HeJunling Guo . Supramolecular phenolic network-engineered C–CeO2 nanofibers for simultaneous determination of isoniazid and hydrazine in biological fluids. Chinese Chemical Letters, 2024, 35(6): 109113-. doi: 10.1016/j.cclet.2023.109113

    9. [9]

      Jia ChenYun LiuZerong LongYan LiHongdeng Qiu . Colorimetric detection of α-glucosidase activity using Ni-CeO2 nanorods and its application to potential natural inhibitor screening. Chinese Chemical Letters, 2024, 35(9): 109463-. doi: 10.1016/j.cclet.2023.109463

    10. [10]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    11. [11]

      Simin WeiYaqing YangJunjie LiJialin WangJinlu TangNingning WangZhaohui Li . The Mn/Yb/Er triple-doped CeO2 nanozyme with enhanced oxidase-like activity for highly sensitive ratiometric detection of nitrite. Chinese Chemical Letters, 2024, 35(6): 109114-. doi: 10.1016/j.cclet.2023.109114

    12. [12]

      Xiangyang JiYishuang ChenPeng ZhangShaojia SongJian LiuWeiyu Song . Boosting the first C–H bond activation of propane on rod-like V/CeO2 catalyst by photo-assisted thermal catalysis. Chinese Chemical Letters, 2025, 36(5): 110719-. doi: 10.1016/j.cclet.2024.110719

    13. [13]

      Jie ZHANGXin LIUZhixin LIYuting PEIYuqi YANGHuimin LIZhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310

    14. [14]

      Xingmin ChenYunyun WuYao TangPeishen LiShuai GaoQiang WangWen LiuSihui Zhan . Construction of Z-scheme Cu-CeO2/BiOBr heterojunction for enhanced photocatalytic degradation of sulfathiazole. Chinese Chemical Letters, 2024, 35(7): 109245-. doi: 10.1016/j.cclet.2023.109245

    15. [15]

      Hongwei DingJingjing YangYongchen ShuaiDi WeiXueliang LiuGuiying LiLin JinJianliang ShenIn situ preparation of tannin-mediated CeO2@CuS nanocomposites for multimodal wound therapy. Chinese Chemical Letters, 2025, 36(6): 110286-. doi: 10.1016/j.cclet.2024.110286

    16. [16]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    17. [17]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    18. [18]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

    19. [19]

      Xubin QianLei XuXu GeZhun LiuCheng FangJianbing WangJunfeng Niu . Can perfluorooctanoic acid be effectively degraded using β-PbO2 reactive electrochemical membrane?. Chinese Chemical Letters, 2024, 35(7): 109218-. doi: 10.1016/j.cclet.2023.109218

    20. [20]

      Di Wang Qing-Song Chen Yi-Ran Lin Yun-Xin Hou Wei Han Juan Yang Xin Li Zhen-Hai Wen . Tuning strategies and electrolyzer design for Bi-based nanomaterials towards efficient CO2 reduction to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(8): 100346-100346. doi: 10.1016/j.cjsc.2024.100346

Metrics
  • PDF Downloads(1)
  • Abstract views(1058)
  • HTML views(26)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return