Citation: Jing Sun, Xiaoyun Lu, Haiou Song, Qimeng Li, Shupeng Zhang, Aimin Li. Design of Capacitive Deionization Electrode with Insertion of Anions and Cations[J]. Chemistry, ;2021, 84(5): 402-410. shu

Design of Capacitive Deionization Electrode with Insertion of Anions and Cations

Figures(4)

  • The ions intercalation capacitive deionization (CDI) electrode materials with ions embedding/de-embedding ability have become a new type of CDI electrode with high specific capacity, which can effectively improve the shortcomings of limited ions storage capacity and easy corrosion on traditional carbon electrode. Based on the classification of metal oxide, Mxenes, NASICON type phosphate materials, the design of representative electrode materials depend on ions embedding/de-embedding and their application in CDI in recent years are reviewed in this paper in order to understand the structure-activity relationship and develop electrode materials with better performance.
  • 加载中
    1. [1]

      Elimelech M, Phillip W A. Science, 2011, 333(6043): 712~717. 

    2. [2]

      Ying P J, Li M, Yu F L, et al. ACS Appl. Mater. Interf., 2020, 12(29): 32880~32887. 

    3. [3]

      Geng Y, Sun W, Ying P J, et al. Adv. Funct. Mater., 2020, 2007648.

    4. [4]

      Liu Y, Gao X, Wang Z P, et al. Chem. Eng. J., 2021, 403: 126326. 

    5. [5]

      Nassrullah H, AnisS F, Hashaikeh R, et al. Desalination, 2020, 491: 114569. 

    6. [6]

      Karaghouli A A, Kazmerski L L. Renew. Sustain. Energy Rev., 2013, 24: 343~356. 

    7. [7]

      Mayor B. Desalination, 2019, 457: 75~84. 

    8. [8]

      Semiat R. Environ. Sci. Technol., 2008, 42(22): 8193~8201. 

    9. [9]

       

    10. [10]

      Han D C, Zhang C M, Guan J, et al. Electrochim. Acta, 2020, 336: 135639. 

    11. [11]

      Zhang H, Zhang W X, Shen J M, et al. Desalination, 2020, 473: 114173. 

    12. [12]

       

    13. [13]

      Vanysek P. CRC Hand Book of Chemistry and Physics, 1993: 5~92.

    14. [14]

      Li M, Park H G. ACS Appl. Mater. Interf., 2018, 10(3): 2442~2450. 

    15. [15]

      Porada S, Borchardt L, Oschatz M, et al. Energy Environ. Sci., 2013, 6(12): 3700~3712. 

    16. [16]

      Chen Z L, Zhang H T, Wu C X, et al. Desalination, 2018, 433: 68~74. 

    17. [17]

      Xu P, Drewes J E, Heil D, et al. Water Res., 2008, 42(10-11): 2605~2617. 

    18. [18]

      Kang J, Kim T Y, Jo K, et al. Desalination, 2014, 352: 52~57. 

    19. [19]

      Elisadiki J, Jande Y A C, Machunda R L, et al. Carbon, 2019, 147: 582~593. 

    20. [20]

      Korkmaz S, Kariper I A. J. Energy Storage, 2020, 27: 101038. 

    21. [21]

      Shi P F, Wang C, Sun J Y, et al. Sep. Purif. Technol., 2020, 235: 116196. 

    22. [22]

      Ding Z B, Xu X T, Li Y Q, et al. Desalination, 2019, 468: 114078. 

    23. [23]

      Pasta M, Wessells C D, Cui Y, et al. Nano Lett., 2012, 12(2): 839~843. 

    24. [24]

      Lee J, Kim S, Kim C, et al. Energy Environ. Sci., 2014, 7(11): 3683~3689. 

    25. [25]

      Chen F M, Huang Y X, Guo L, et al. Energy Environ. Sci., 2017, 10(10): 2081~2089. 

    26. [26]

      Suss M E, Presser V. Joule, 2018, 2(1): 10~15. 

    27. [27]

      Augustyn V, Simonbc P, Dunn B. Energy Environ. Sci., 2014, 7(5): 1597~1614. 

    28. [28]

      Jaoude M A, Alhseinat E, Polychronopoulou K, et al. Electrochim. Acta, 2020, 330: 135202. 

    29. [29]

      Hand S, Cusick R D. Environ. Sci. Technol., 2017, 51(20): 12027~12034. 

    30. [30]

      Tang Y J, Zheng S S, Xu Y X, et al. Energy Storage Mater., 2018, 12: 284~309. 

    31. [31]

      Devaraj S, Munichandraiah N. J. Phys. Chem. C, 2008, 112: 4406~4417. 

    32. [32]

       

    33. [33]

      Lee H Y, Goodenough J B. J. Solid State Chem., 1999, 144(1): 220~223. 

    34. [34]

      Toupin M, Brousse T, Bélanger D. Chem. Mater., 2004, 16(16): 3184~3190. 

    35. [35]

      Tan G C, Lu S D, Xu N, et al. Environ. Sci. Technol., 2020, 54(9): 5843~5852. 

    36. [36]

      Ma J, Cheng Y J, Wang L, et al. Chem. Eng. J., 2020, 384: 123329. 

    37. [37]

      Naguib M, Kurtoglu M, Presser V, et al. Adv. Mater., 2011, 23: 4248~4253. 

    38. [38]

      Malaki M, Maleki A, Varma R S. J. Mater. Chem. A, 2019, 7(18): 10843~10857. 

    39. [39]

      Srimuk P, Kaasik F, Krüner B, et al. J. Mater. Chem. A, 2016, 4(47): 18265~18271. 

    40. [40]

      Chen B B, Feng A H, Deng R X, et al. ACS Appl. Mater. Interf., 2020, 12(12): 13750~13758. 

    41. [41]

      Agartan L, Hantanasirisakul K, Buczek S, et al. Desalination, 2020, 477: 114267. 

    42. [42]

      Srimuk P, Halim J, Lee J H, et al. ACS Sustain. Chem. Eng., 2018, 6(3): 3739~3747. 

    43. [43]

      Srimuk P, Lee J H, Fleischmann S, et al. J. Mate. Chem. A, 2017, 5(30): 15640~15649. 

    44. [44]

      Tang W J, Wang X L, Xie D, et al. J. Mater. Chem. A, 2018, 6(37): 18318~18324. 

    45. [45]

      Han J L, Yan T T, Shen J J, et al. Environ. Sci. Technol., 2019, 53(21): 12668~12676. 

    46. [46]

      Peng W J, Wang W, Han G H, et al. Desalination, 2020, 473: 114191. 

    47. [47]

      Jia F F, Sun K G, Yang B Q, et al. Desalination, 2018, 446: 21~30. 

    48. [48]

      Yue Y F, Binder A J, Guo B K, et al. Angew. Chem. Int. Ed., 2014, 53: 3134~3137. 

    49. [49]

      You Y, Wu X L, Yin Y X, et al. Energy Environ. Sci., 2014, 7(5): 1643~1647. 

    50. [50]

      Qian J F, Wu C, Cao Y L, et al. Adv. Energy Mater., 2018, 8: 1702619. 

    51. [51]

      Wu XY, Wu C H, Wei C X, et al. ACS Appl. Mater. Interf., 2016, 8: 5393~5399. 

    52. [52]

      Lee J, Kim S, Yoon J. ACS Omega, 2017, 2(4): 1653~1659. 

    53. [53]

      Guo L, Mo R W, Shi W H, et al. Nanoscale, 2017, 9(35): 13305~13312. 

    54. [54]

      Vafakhah S, Guo L, Sriramulu D, et al. ACS Appl. Mater. Interf., 2019, 11: 5989~5998. 

    55. [55]

      Yu S C, Liu Z G, Tempel H, et al. J. Mater. Chem. A, 2018, 6(37): 18304~18317. 

    56. [56]

      Qiu S, Wu X Y, Wang M Y, et al. Nano Energy, 2019, 64: 103941. 

    57. [57]

      Li X N, Zhu X B, Liang J W, et al. J. Electrochem. Soc., 2014, 161(6): A1181~A1187.

    58. [58]

      Liu Z X, An Y F, Pang G, et al. Chem. Eng. J., 2018, 353: 814~823. 

    59. [59]

      Wang Q, Zhang M Y, Zhou C G, et al. J. Phys. Chem. C, 2018, 122(29): 16649~16654. 

    60. [60]

      Wang K, Liu Y, Ding Z B, et al. J. Mater. Chem. A, 2019, 7(19): 12126~12133. 

    61. [61]

      Huang Y X, Chen F M, Guo L, et al. J. Mater. Chem. A, 2017, 5(34): 18157~18165. 

    62. [62]

      Huang Y X, Chen F M, Guo L, et al. Desalination, 2019, 451: 241~247. 

    63. [63]

      Cao J L, Wang Y, Wang L, et al. Nano Lett., 2019, 19(2): 823~828. 

    64. [64]

      Fang J Q, Wang S Q, Li Z T, et al. J. Mater. Chem. A, 2016, 4(4): 1180~1185. 

    65. [65]

      Ko J S, Paul P P, Wan G, et al. Chem. Mater., 2020, 32(7): 3028~3035. 

    66. [66]

      Song W X, Ji X B, Wu Z P, et al. J. Mater. Chem. A, 2014, 2(15): 5358~5362. 

    67. [67]

      Zhao W Y, Guo L, Ding M, et al. ACS Appl. Mater. Interf., 2018, 10(47): 40540~40548. 

  • 加载中
    1. [1]

      Zeqiu ChenLimiao CaiJie GuanZhanyang LiHao WangYaoguang GuoXingtao XuLikun Pan . Advanced electrode materials in capacitive deionization for efficient lithium extraction. Acta Physico-Chimica Sinica, 2025, 41(8): 100089-0. doi: 10.1016/j.actphy.2025.100089

    2. [2]

      Zehao ZhangZheng WangHaibo Li . Preparation of 2D V2O3@Pourous Carbon Nanosheets Derived from V2CFx MXene for Capacitive Desalination. Acta Physico-Chimica Sinica, 2024, 40(8): 2308020-0. doi: 10.3866/PKU.WHXB202308020

    3. [3]

      Zhuo WangXue BaiKexin ZhangHongzhi WangJiabao DongYuan GaoBin Zhao . MOF-Templated Synthesis of Nitrogen-Doped Carbon for Enhanced Electrochemical Sodium Ion Storage and Removal. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-0. doi: 10.3866/PKU.WHXB202405002

    4. [4]

      Guoze YanBin ZuoShaoqing LiuTao WangRuoyu WangJinyang BaoZhongzhou ZhaoFeifei ChuZhengtong LiYamauchi YusukeMelhi SaadXingtao Xu . Opportunities and Challenges of Capacitive Deionization for Uranium Extraction from Seawater. Acta Physico-Chimica Sinica, 2025, 41(4): 2404006-0. doi: 10.3866/PKU.WHXB202404006

    5. [5]

      Xiaochen ZhangFei YuJie Ma . Cutting-Edge Applications of Multi-Angle Numerical Simulations for Capacitive Deionization. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-0. doi: 10.3866/PKU.WHXB202311026

    6. [6]

      Shuhong XiangLv YangYingsheng XuGuoxin CaoHongjian Zhou . Selective electrosorption of Cs(Ⅰ) from high-salinity radioactive wastewater using CNT-interspersed potassium zinc ferrocyanide electrodes. Acta Physico-Chimica Sinica, 2025, 41(9): 100097-0. doi: 10.1016/j.actphy.2025.100097

    7. [7]

      Jun HuangPengfei NieYongchao LuJiayang LiYiwen WangJianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-0. doi: 10.1016/j.actphy.2025.100066

    8. [8]

      Ping YeLingshuang QinMengyao HeFangfang WuZengye ChenMingxing LiangLibo Deng . Potential of Zero Charge-Mediated Electrochemical Capture of Cadmium Ions from Wastewater by Lotus Leaf-Derived Porous Carbons. Acta Physico-Chimica Sinica, 2025, 41(3): 2311032-0. doi: 10.3866/PKU.WHXB202311032

    9. [9]

      Yihan XueXue HanJie ZhangXiaoru Wen . NCQDs修饰FeOOH基复合材料的制备及其电容脱盐性能. Acta Physico-Chimica Sinica, 2025, 41(7): 100072-0. doi: 10.1016/j.actphy.2025.100072

    10. [10]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    11. [11]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    12. [12]

      Qi LiPingan LiZetong LiuJiahui ZhangHao ZhangWeilai YuXianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030

    13. [13]

      Yuyao WangZhitao CaoZeyu DuXinxin CaoShuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2406014-0. doi: 10.3866/PKU.WHXB202406014

    14. [14]

      Yingtong FANYujin YAOShouhao WANYihang SHENXiang GAOCuie ZHAO . Construction of copper tetrakis(4-carboxyphenyl)porphyrin/silver nanowire composite electrode for flexible and transparent supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1309-1317. doi: 10.11862/CJIC.20250043

    15. [15]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    16. [16]

      Qing XueShengyi LiYanan ZhaoPeng ShengLi XuZhengxi LiBo ZhangHui LiBo WangLibin YangYuliang CaoZhongxue Chen . Novel Alkaline Sodium-Ion Battery Capacitor Based on Active Carbon||Na0.44MnO2 towards Low Cost, High-Rate Capability and Long-Term Lifespan. Acta Physico-Chimica Sinica, 2024, 40(2): 2303041-0. doi: 10.3866/PKU.WHXB202303041

    17. [17]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    18. [18]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    19. [19]

      Huayan LiuYifei ChenMengzhao YangJiajun Gu . Strategies for enhancing capacity and rate performance of two-dimensional material-based supercapacitors. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-0. doi: 10.1016/j.actphy.2025.100063

    20. [20]

      Huimin LiuKezhi LiXin ZhangXuemin YinQiangang FuHejun Li . SiC Nanomaterials and Their Derived Carbons for High-Performance Supercapacitors. Acta Physico-Chimica Sinica, 2024, 40(2): 2304026-0. doi: 10.3866/PKU.WHXB202304026

Metrics
  • PDF Downloads(31)
  • Abstract views(3880)
  • HTML views(673)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return