Citation: FAN Li-ping, XUE Song. Improvement in the performance of streptomycin wastewater MFC treatment and electricity generation by co-substrate addition[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(3): 370-377. shu

Improvement in the performance of streptomycin wastewater MFC treatment and electricity generation by co-substrate addition

  • Corresponding author: FAN Li-ping, flpsd@163.com
  • Received Date: 7 December 2016
    Revised Date: 22 January 2017

    Fund Project: the National Natural Science Foundation of China 61143007the Chinese-Macedonian Scientific and Technological Cooperation Project of Ministry of Science and Technology of the People's Republic of China [2016]10:4-4

Figures(15)

  • A microbial fuel cell system was built by using the mixed solution of K3[Fe (CN)6] and NaCl as catholyte, acclimated sediment of an artificial lake as the source of microbial species, and streptomycin wastewater as anolyte; the effect of co-substrate addition on the purification effect and electricity generation ability of the microbial fuel cell was investigated. The results show that the electricity generation ability and wastewater treatment effect of microbial fuel cell with streptomycin wastewater as anolyte are quite poor and deteriorate even further with the increase of the streptomycin concentration. However, the electricity generation ability and wastewater treatment effect of the microbial fuel cell can be significantly improved by adding glucose as a co-substrate to the anode streptomycin wastewater. In case without the co-substrate, the COD removal rate is only 52% when the concentration of streptomycin is 50 mg/L, with a steady electric current density of 25 mA/m2 and a steady output voltage of 4.72 mV; by adding the co-substrate, the COD removal rate reaches 92%, with a steady electric current density of 300 mA/m2 and a steady output voltage of 54 mV.
  • 加载中
    1. [1]

      KEEN P L, PATRICK D M. Tracking change:A look at the ecological footprint of antibiotics and antimicrobial resistance[J]. Antibiotics, 2013,2(2):191-205. doi: 10.3390/antibiotics2020191

    2. [2]

      LIEN L T, HOA N Q, CHUC N T, THOA N T, PHUC H D, DIWAN V, DAT N T, TAMHANKAR A J, LUNDBORG C S. Antibiotics in wastewater of a rural and an urban hospital before and after wastewater treatment, and the relationship with antibiotic use-a one year study from vietnam[J]. Int J Environ Res Public Health, 2016,13(6)588. doi: 10.3390/ijerph13060588

    3. [3]

      WANG Y, LU J, WU J, LIU Q, ZHANG H, JIN S. Adsorptive removal of fluoroquinolone antibiotics using bamboo biochar[J]. Sustainability, 2015,7(9):12947-12957. doi: 10.3390/su70912947

    4. [4]

      LINGHU Wen-sheng. Progress on treatment and analysis of antibiotic wastewater[J]. Chem Reagents, 2015,37(2):127-131.  

    5. [5]

      BRASCHI I, BLASIOLI S, GIGLI L, GESSA C E, ALBERTI A, MARTUCCI A. Removal of sulfonamide antibiotics from water:Evidence of adsorption into an organophilic zeolite Y by its structural modifications[J]. J Hazard Mater, 2010,178(1/3):218-225.  

    6. [6]

      DOLLIVER H, GUPTA S. Antibiotic losses in leaching and surface runoff from manure-amended agricultural land[J]. J Environ Qual, 2008,37(3):1227-1237. doi: 10.2134/jeq2007.0392

    7. [7]

      LI B, ZHANG T. Biodegradation and adsorption of antibiotics in the activated sludge process[J]. Environ Sci Technol, 2010,44(9):3468-3473. doi: 10.1021/es903490h

    8. [8]

      AKBARPOUR-TOLOTI A, MEHRDADI N. Wastewater treatment from antibiotics plant (UASB reactor)[J]. Int J Environ Res, 2011,5(1):241-246.

    9. [9]

      LIN Hai-Long, SONG Ge, SI Liang, YU Jian-Ping, CHEN Zhao-Bo, WU Yu-Feng. Advances in study on the biological treatment of antibiotic wastewater[J]. Chin Agri Sci Bull, 2012,28(11):258-261.  

    10. [10]

      GULKOWSKA A, LEUNG H W, SO M K, TANIYASU S, YAMASHITA N, YEUNG L W, RICHARDSON B J, LEI A P, GIESY J P, LAM P K. Removal of antibiotics from wastewater by sewage treatment facilities in Hong Kong and Shenzhen, China[J]. Water Res, 2008,42(1/2):395-403.  

    11. [11]

      CHEN Y S, ZHANG H B, LUO Y M, SONG J. Occurrence and dissipation of veterinary antibiotics in two typical swine wastewater treatment systems in east China[J]. Environ Monit Assess, 2012,184(4):2205-2217. doi: 10.1007/s10661-011-2110-y

    12. [12]

      LI W W, YU H Q, HE Z. Towards sustainable wastewater treatment by using microbial fuel cells-centered technologies[J]. Energy Environ Sci, 2014,7:911-924.  

    13. [13]

      LIU H, RAMNARAYANAN R, LOGAN B E. Production of electricity during wastewater treatment using a single chamber microbial fuel cell[J]. Environ Sci Technol, 2004,38(7):2281-2285. doi: 10.1021/es034923g

    14. [14]

      PANDEY B K, MISHRA V, AGRAWAL S. Production of bio-electricity during wastewater treatment using a single chamber microbial fuel cell[J]. Int J Eng, Sci Technol, 2011,3(4):42-47.  

    15. [15]

      MATHURIYA A S. Enhanced tannery wastewater treatment and electricity generation in microbial fuel cell by bacterial strains isolated from tannery waste[J]. Environ Eng Manag J, 2014,13(12):2945-2954.

    16. [16]

      CHENG Li-yu, XU Long-jun. Effects of electrode surface area on the performance of microbial fuel cells with the aging landfill leachate as substrate[J]. J Fuel Chem Technol, 2015,43(8):1011-1017.  

    17. [17]

      FAN Li-ping, ZHENG Yu-jiao, MIAO Xiao-hui. Effects of catholyte and dissolved oxygen on microbial fuel cell performance[J]. J Chem Eng Chin Univ, 2016,30(2):491-496.  

    18. [18]

      BOUALLAGUI H, LAHDHEB H, ROMDAN E B, RACHDI B, HAMDI M. Improvement of fruit and vegetable waste anaerobic digestion performance and stability with co-substrates addition[J]. J Environ Manage, 2009,90(5):1844-1849. doi: 10.1016/j.jenvman.2008.12.002

    19. [19]

      LU H F, ZHANG G M, LU Y F, ZHANG Y H, LI B M, CAO W. Using co-metabolism to accelerate synthetic starch wastewater degradation and nutrient recovery in photosynthetic bacterial wastewater treatment technology[J]. Environ Technol, 2016,37(7):775-784. doi: 10.1080/09593330.2015.1084050

    20. [20]

      RASOOL K, MAHMOUD K A, LEE D S. Influence of co-substrate on textile wastewater treatment and microbial community changes in the anaerobic biological sulfate reduction process[J]. J Hazard Mater, 2015,299(12):453-461.  

    21. [21]

      NOZARI M, SAMAEI M R, DEHGHANI M. The effect of co-metabolism on removal of hexadecane by microbial consortium from soil in a slurry sequencing batch reactor[J]. J Health Sci Surveillance Sys, 2014,2(3):113-124.  

  • 加载中
    1. [1]

      Lisha LEIWei YONGYiting CHENGYibo WANGWenchao HUANGJunhuan ZHAOZhongjie ZHAIYangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202

    2. [2]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    3. [3]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    4. [4]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    5. [5]

      Wei Li Guoqiang Feng Ze Chang . Teaching Reform of X-ray Diffraction Using Synchrotron Radiation in Materials Chemistry. University Chemistry, 2024, 39(3): 29-35. doi: 10.3866/PKU.DXHX202308060

    6. [6]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    7. [7]

      Peiling Li Qing Feng Hongling Yuan Qin Wang . Live Interview Recording about the Penicillin Family. University Chemistry, 2024, 39(9): 122-127. doi: 10.3866/PKU.DXHX202311022

    8. [8]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    9. [9]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    10. [10]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    11. [11]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    12. [12]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    13. [13]

      Yadan Luo Hao Zheng Xin Li Fengmin Li Hua Tang Xilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052

    14. [14]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    15. [15]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

    16. [16]

      Ping Ye Lingshuang Qin Mengyao He Fangfang Wu Zengye Chen Mingxing Liang Libo Deng . 荷叶衍生多孔碳的零电荷电位调节实现废水中电化学捕集镉离子. Acta Physico-Chimica Sinica, 2025, 41(3): 2311032-. doi: 10.3866/PKU.WHXB202311032

    17. [17]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    18. [18]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    19. [19]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    20. [20]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Preparation of Superhydrophobic Surfaces and Their Application in Oily Wastewater Treatment: Design of a Comprehensive Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(2): 34-40. doi: 10.3866/PKU.DXHX202307081

Metrics
  • PDF Downloads(1)
  • Abstract views(806)
  • HTML views(104)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return