Citation: Du Yuting, Gao Denglei, Zhang Na, Yi Ding, Wang Xi. Regulation of the d-Orbitals of Platinum through Low-Entropy Alloying#[J]. Chemistry, ;2020, 83(7): 652-658. shu

Regulation of the d-Orbitals of Platinum through Low-Entropy Alloying#

  • Corresponding author: Wang Xi, xiwang@bjtu.edu.cn
  • Received Date: 1 February 2020
    Accepted Date: 28 March 2020

    Fund Project: 中央高校基本科研基金项目 2018JBZ107化学与精细化工广东省实验室项目 1932004中国科学技术部"国际科技合作重点项目" 2018YFE0124600中央高校基本科研基金项目 2018JBZ107中央高校基本科研基金项目(2018JBZ107, 2019RC035)、国家自然科学基金项目(91961125, 21905019)、中国科学技术部"国际科技合作重点项目"(2018YFE0124600)、化学与精细化工广东省实验室项目(1932004)和北京交通大学"卓越百人"人才基金项目资助国家自然科学基金项目 91961125国家自然科学基金项目 21905019

Figures(6)

  • It has been reported that precisely regulating the electronic structures of the active site is one of the most effective means to realize precise catalysis, which often includes lattice strain and charge transfer, etc. In doping systems, some new theories, such as the Atom-Realm (AR) effect, have been used to explain the changes in physical and chemical properties of the substrates caused by the geometry and electronic structures of the active heteroatom sites. Based on the low-entropy alloy and using the first-principles calculations, we report a new strategy for achieving precise catalysis through regulating the orbitals and spin of the active sites, i.e. doping Fe atoms in Pt to change its d-orbitals for the regulation of catalytic performance. We established both the models of pure Pt and Pt-Fe alloy and calculated the O2 adsorption energy on different active sites. We found that doping Fe atoms in pure Pt can weaken the binding of O2-Pt without affecting the O2 dissociation. Based on the projected density of states (PDOS) analysis, the hybridization of Fe-3d and Pt-5d states leads to the shift of atomic orbitals as well as the spin polarization of Pt metal. Therefore, part of the electronic states of Pt move above the Fermi level and overlap with O2*, making the hybridization of O2* and Pt-5d states in Pt-Fe alloy much stronger than that in pure Pt. The regulation of d-orbitals results in the improvement of the catalytic activity of O2 on the surface of Pt-Fe alloy. Our study predicts that the orbital catalysis and spin catalysis will provide an effective method for precise catalysis as well as high-efficient catalysts design.
  • 加载中
    1. [1]

      Hoang T T, Gewirth A A. ACS Catal., 2016, 6(2):1159~1164. 

    2. [2]

      Zhang C, Sandorf W, Peng Z. ACS Catal., 2015, 5(4):2296~2300. 

    3. [3]

      Freakley S J, He Q, Harrhy J H, et al. Science, 2016, 351(6276):965~968. 

    4. [4]

      Zhang Q, Cheng K, Kang J, et al. ChemSusChem, 2014, 7(5):1251~1264. 

    5. [5]

      Wan C, Leonard B M. Chem. Mat., 2015, 27(12):4281~4288. 

    6. [6]

      Peters A W, Li Z, Farha O K, et al. ACS Appl. Mater. Interf., 2016, 8(32):20675~20681. 

    7. [7]

      Li J, Xi Z, Pan Y T, et al. J. Am. Chem. Soc., 2018, 140(8):2926~2932. 

    8. [8]

      Li Y, Liu C, Liu Y, et al. J. Power Sources, 2015, 286:354~361. 

    9. [9]

      Yang Y, Liu X, Dai Z, et al. Adv. Mater. 2017, 29:1606922. 

    10. [10]

      Kowal A, Li M, Shao M, et al. Nat. Mater., 2009, 8(4):325~330. 

    11. [11]

      Liu J, Lucci F R, Yang M, et al. J. Am. Chem. Soc., 2016, 138(20):6396~6399. 

    12. [12]

      Lee M J, Kang J S, Kang Y S, et al. ACS Catal., 2016, 6(4):2398~2407. 

    13. [13]

      Yang Y, Liu X, Zhu Z, et al. Joule, 2018, 2(6):1075~1094. 

    14. [14]

      Pan L, Zhang Y, Lu F, et al. Energ. Stor. Mater., 2019, 19:39~47.

    15. [15]

      Shi G, Yano H, Tryk D A, et al. ACS Catal., 2017, 7(1):267~274. 

    16. [16]

      Zhou Y, Yang J, Zhu C, et al. ACS Appl. Mater. Interf., 2016, 8(39):25863~25874. 

    17. [17]

      Bertero N M, Trasarti A F, Moraweck B, et al. Appl. Catal. A-Gen., 2009, 358(1):32~41. 

    18. [18]

      Pan Y, Hwang S Y, Shen X, et al. ACS Catal., 2018, 8(7):5777~5786. 

    19. [19]

      Christensen S T, Elam J W. Chem. Mater., 2010, 22(8):2517~2525. 

    20. [20]

      Xie S, Choi S, Lu N, et al. Nano Lett., 2014, 14(6):3570~3576. 

    21. [21]

      Réocreux R, Ould Hamou C A, Michel C, et al. ACS Catal., 2016, 6(12):8166~8178. 

    22. [22]

      Ma D, Ju W, Li T, et al. Appl. Surf. Sci., 2016, 383:98~105. 

    23. [23]

      Barmparis G D, Lodziana Z, Lopez N, et al. Beil. J. Nanotechnol., 2015, 6(1):361~368.

    24. [24]

      Seko A, Togo A, Hayashi H, et al. Phys. Rev. Lett., 2015, 115(20):205901. 

    25. [25]

      Shan B, Cho K. Chem. Phys. Lett., 2010, 492(1~3):131~136. 

    26. [26]

      Hafner J. J. Comput. Chem., 2008, 29(13):2044~2078. 

    27. [27]

      Parr R G. Horizons of Quantum Chemistry. Springer, Dordrecht, 1980:5~15.

    28. [28]

      Perdew J P, Burke K, Ernzerhof M. Phys. Rev. Lett., 1996, 77(18):3865. 

    29. [29]

      HammerB, Hansen L B, Nørskov J K. Phys. Rev. B, 1999, 59(11):7413. 

    30. [30]

      Blöchl P E. Phys. Rev. B, 1994, 50(24):17953. 

    31. [31]

      Grimme S, Antony J, Ehrlich S, et al. J. Chem. Phys., 2010, 132(15):154104. 

    32. [32]

      KunisadaY, Escaño M C, Kasai H. J. Phys.-Condes. Matter, 2011, 23(39):394207. 

    33. [33]

      Yotsuhashi S, Yamada Y, Kishi T, et al. Phys. Rev. B, 2008, 77(11):115413. 

    34. [34]

      Mitchell A D, Cross L C, Sommerfield A E. Tables of interatomic distances and configuration in molecules and ions. Chemical Society, 1958.

    35. [35]

      Mavrikakis M, Hammer B, Nørskov J K. Phys. Rev. Lett., 1998, 81(13):2819. 

    36. [36]

      Sanville E, Kenny S D, Smith R, et al. J. Comput. Chem., 2007, 28(5):899~908. 

    37. [37]

       

  • 加载中
    1. [1]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

    2. [2]

      Haodong WangXiaoxu LaiChi ChenPei ShiHouzhao WanHao WangXingguang ChenDan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473

    3. [3]

      Fangling Cui Zongjie Hu Jiayu Huang Xiaoju Li Ruihu Wang . MXene-based materials for separator modification of lithium-sulfur batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100337-100337. doi: 10.1016/j.cjsc.2024.100337

    4. [4]

      Xu HuangKai-Yin WuChao SuLei YangBei-Bei Xiao . Metal-organic framework Cu-BTC for overall water splitting: A density functional theory study. Chinese Chemical Letters, 2025, 36(4): 109720-. doi: 10.1016/j.cclet.2024.109720

    5. [5]

      Yuxiang Zhang Jia Zhao Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415

    6. [6]

      Xiao-Hong YiChong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094

    7. [7]

      Weiping XiaoYuhang ChenQin ZhaoDanil BukhvalovCaiqin WangXiaofei Yang . Constructing the synergistic active sites of nickel bicarbonate supported Pt hierarchical nanostructure for efficient hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(12): 110176-. doi: 10.1016/j.cclet.2024.110176

    8. [8]

      Mianfeng LiHaozhi WangZijun YangZexiang YinYuan LiuYingmei BianYang WangXuerong ZhengYida Deng . Synergistic enhancement of alkaline hydrogen evolution reaction by role of Ni-Fe LDH introducing frustrated Lewis pairs via vacancy-engineered. Chinese Chemical Letters, 2025, 36(3): 110199-. doi: 10.1016/j.cclet.2024.110199

    9. [9]

      Shuai LiLiuting ZhangFuying WuYiqun JiangXuebin Yu . Efficient catalysis of FeNiCu-based multi-site alloys on magnesium-hydride for solid-state hydrogen storage. Chinese Chemical Letters, 2025, 36(1): 109566-. doi: 10.1016/j.cclet.2024.109566

    10. [10]

      Longlong GengHuiling LiuWenfeng ZhouYong-Zheng ZhangHongliang HuangDa-Shuai ZhangHui HuChao LvXiuling ZhangSuijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120

    11. [11]

      Manoj Kumar SarangiL․D PatelGoutam RathSitansu Sekhar NandaDong Kee Yi . Metal organic framework modulated nanozymes tailored with their biomedical approaches. Chinese Chemical Letters, 2024, 35(11): 109381-. doi: 10.1016/j.cclet.2023.109381

    12. [12]

      Mengxiang ZhuTao DingYunzhang LiYuanjie PengRuiping LiuQuan ZouLeilei YangShenglei SunPin ZhouGuosheng ShiDongting Yue . Graphene controlled solid-state growth of oxygen vacancies riched V2O5 catalyst to highly activate Fenton-like reaction. Chinese Chemical Letters, 2024, 35(12): 109833-. doi: 10.1016/j.cclet.2024.109833

    13. [13]

      Fengxing LiangYongzheng ZhuNannan WangMeiping ZhuHuibing HeYanqiu ZhuPeikang ShenJinliang Zhu . Recent advances in copper-based materials for robust lithium polysulfides adsorption and catalytic conversion. Chinese Chemical Letters, 2024, 35(11): 109461-. doi: 10.1016/j.cclet.2023.109461

    14. [14]

      Haijiang GongQingtan ZengShili GaiYaqian DuJing ZhangQingyu WangHe DingLichun WuAnees Ahmad AnsariPiaoping Yang . Enzyme-based colorimetric signal amplification strategy in lateral flow immunoassay. Chinese Chemical Letters, 2025, 36(5): 110059-. doi: 10.1016/j.cclet.2024.110059

    15. [15]

      Lingling SuQunyan WuCongzhi WangJianhui LanWeiqun Shi . Theoretical design of polyazole based ligands for the separation of Am(Ⅲ)/Eu(Ⅲ). Chinese Chemical Letters, 2024, 35(8): 109402-. doi: 10.1016/j.cclet.2023.109402

    16. [16]

      Yu-Hang LiShuai GaoLu ZhangHanchun ChenChong-Chen WangHaodong Ji . Insights on selective Pb adsorption via O 2p orbit in UiO-66 containing rich-zirconium vacancies. Chinese Chemical Letters, 2024, 35(8): 109894-. doi: 10.1016/j.cclet.2024.109894

    17. [17]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    18. [18]

      Jiajun WangGuolin YiShengling GuoJianing WangShujuan LiKe XuWeiyi WangShulai Lei . Computational design of bimetallic TM2@g-C9N4 electrocatalysts for enhanced CO reduction toward C2 products. Chinese Chemical Letters, 2024, 35(7): 109050-. doi: 10.1016/j.cclet.2023.109050

    19. [19]

      Fanjun KongYixin GeShi TaoZhengqiu YuanChen LuZhida HanLianghao YuBin Qian . Engineering and understanding SnS0.5Se0.5@N/S/Se triple-doped carbon nanofibers for enhanced sodium-ion batteries. Chinese Chemical Letters, 2024, 35(4): 108552-. doi: 10.1016/j.cclet.2023.108552

    20. [20]

      Ze ZhangLei YangJin-Ru LiuHao HuJian-Li MiChao SuBei-Bei XiaoZhi-Min Ao . Improved oxygen electrocatalysis at FeN4 and CoN4 sites via construction of axial coordination. Chinese Chemical Letters, 2025, 36(2): 110013-. doi: 10.1016/j.cclet.2024.110013

Metrics
  • PDF Downloads(15)
  • Abstract views(1094)
  • HTML views(344)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return