Characteristics of selenium capture by typical Ca-/Mg-based sorbents
- Corresponding author: HUANG Ya-ji, heyyj@seu.edu.cn
Citation:
YU Meng-zhu, WANG Hai, HUANG Ya-ji, ZHU Zhi-cheng, FAN Cong-hui, DONG Lu, CHENG Hao-qiang. Characteristics of selenium capture by typical Ca-/Mg-based sorbents[J]. Journal of Fuel Chemistry and Technology,
;2020, 48(11): 1335-1344.
SONG B, SONG M, CHEN D D, CAO Y, MENG F Y, WEI Y X. Retention of arsenic in coal combustion flue gas at high temperature in the presence of CaO[J]. Fuel, 2020,259.
CHENG Yun, WANG Xin-ye, Lv Wen-ting, HUANG Ya-ji, XIE Hao, GUO Ruo-jun, PIAO Gui-lin. A review on heavy and alkali metals adsorption by kaolin at high temperature[J]. Chem Ind Eng Prog, 2019,38(8):3852-3865.
TANG Q, LIU G J, YAN Z C, SUN R Y. Distribution and fate of environmentally sensitive elements (arsenic, mercury, stibium and selenium) in coal-fired power plants at Huainan, Anhui, China[J]. Fuel, 2012,95(1):334-339.
ITSKOS G, KOUKOUZAS N, VASILATOS C, MEGREMI I, MOUTSATSOU A. Comparative uptake study of toxic elements from aqueous media by the different particle-size-fractions of fly ash[J]. J Hazard Mater, 2010,183(1/3):787-792.
LIU Rui-qing, WANG Jun-wei. Influence of minerals and mineral ions on selenium release behaviors during coal pyrolysis[J]. Environ Chem, 2013(1):100-105.
WANG L, JU Y W, LIU G J, CHOU C L, ZHENG L G, QI C C. Selenium in Chinese coals: distribution, occurrence, and health impact[J]. Environ Earth Sci, 2010,60(8):1641-1651.
HOPKINS W A, MENDONCA M T, ROWE C L, CONGDON J D. Elevated trace element concentrations in southern toads, Bufo terrestris, exposed to coal combustion waste[J]. Arch Environ Contam Toxicol, 1998,35(2):325-329.
ZHONG L P, CAO Y, LI W Y, XIE K C, PAN W P. Selenium speciation in flue desulfurization residues[J]. J Environ Sci, 2011,23(1):171-176.
XIONG Quan-jun, QIU Jian-rong, XU Chao-fen, WANG Quan-hai, LIU Hao, CHEN Yong-li, XU Zhi-ying. Study on the volatilization behavior of se under oxygen-combustion atmosphere[J]. J Eng Thermophys, 2006,27(z2):195-198.
FRANDSEN F, DAMJOHANSEN K, RASMUSSEN P. Trace-elements from combustion and gasification of coal-an equilibrium approach[J]. Prog Energy Combust Sci, 1994,20(2):115-138.
FAN Ya M, ZHUO Y Q, LI L L. SeO2 adsorption on CaO surface: DFT and experimental study on the adsorption of multiple SeO2 molecules[J]. Appl Surf Sci, 2017,420:465-471.
HU J J, SUN Q, HE H. Thermal effects from the release of selenium from a coal combustion during high-temperature processing: a review[J]. Environ Sci Pollut Res, 2018,25(14):13470-13478.
SENIOR C, VAN OTTEN B, WENDT JOL, SAROFIM A. Modeling the behavior of selenium in pulverized-coal combustion systems[J]. Combust Flame, 2010,157(11):2095-2105.
DIAZ-SOMOANO M, MARTINEZ-TARAZONA M R. Retention of arsenic and selenium compounds using limestone in a coal gasification flue gas[J]. Environ Sci Technol, 2004,38(3):899-903.
ROY B, BHATTACHARYA S. Release behavior of Hg, Se, Cr and As during oxy-fuel combustion using Loy Yang brown coal in a bench-scale fluidized bed unit[J]. Powder Technol, 2016,302:328-332.
ZENG T F, SAROFIM A F, SENIOR C L. Vaporization of arsenic, selenium and antimony during coal combustion[J]. Combust. Flame, 2001,126(3):1714-1724.
JAMES D W, KRISHNAMOORTHY G, BENSON S A, SEAMES W S. Modeling trace element partitioning during coal combustion[J]. Fuel Process Technol, 2014,126:284-297.
HE Xuan-ming, LI Yao-la, HAN Jun, HUANG Li. Distribution of Se and Cd during coal coking[J]. J Fuel Chem Technol, 2010,38(5):528-533.
LIU S Q, WANG Y T, YU L, OAKEY J. Volatilization of mercury, arsenic and selenium during underground coal gasification[J]. Fuel, 2006,85(10/11):1550-1558.
FURUZONO T, NAKAJIMA T, FUJISHIMA H, TAKANASHI H, OHKI A. Behavior of selenium in the flue gas of pulverized coal combustion system: Influence of kind of coal and combustion conditions[J]. Fuel Process Technol, 2017,167:388-394.
ZOU R J, ZHANG Hao Y, LUO G Q, FANG C, SHI M T, HU H Y, LI X, YAO H. Selenium migration behaviors in wet flue gas desulfurization slurry and an in-situ treatment approach[J]. Chem Eng J, 2020,3858.
WANG J W, ZHANG Y S, WANG T, XU H, PAN W P. Effect of modified fly ash injection on As, Se, and Pb emissions in coal-fired power plant[J]. Chem Eng J, 2020,38010.
LI Y Z, TONG H L, ZHUO Y Q, CHEN C H, XU X C. Simultaneous removal of SO2 and trace SeO2 from flue gas: Effect of product layer on mass transfer[J]. Environ Sci Technol, 2006,40(13):4306-4311.
LI Y Z, TONG H L, ZHUO Y Q, WANG S J, XU X C. Simultaneous removal of SO2 and trace SeO2 from flue gas: Effect of SO2 on selenium capture and kinetics study[J]. Environ Sci Technol, 2006,40(24):7919-7924.
SENIOR C L, TYREE C A, MEEKS N D, ACHARYA C, MCCAIN J D, CUSHING K M. Selenium partitioning and removal across a wet FGD scrubber at a coal-fired power plant[J]. Environ Sci Technol, 2015,49(24):14376-14382.
LI Yu-zhong, TONG Hui-ling, ZHUO Yu-qun, CHEN Chang-he, XU Xu-chang. Experimental study on simultaneous removal of sulfur and trace selenium element[J]. J Eng Thermophys, 2006,27(z2):223-226.
SONG Hua, WANG Xue-qin, ZHAO Xian-jun, ZHANG Wen-chao, LV Bao-hang, LIU Yan-xiu. Progress in wet flue gas desulfurization technology[J]. Chem Ind Eng, 2009,26(5):455-459.
LI Yu-zhong, TONG Hui-ling, LI Yan, ZHUO Yu-qun, XU Xu-chang. Effect of CO2 on trace selenium adsorption by CaO from flue gas[J]. J Tsinghua University(Sci. Technol.), 2007,47(5):699-702.
GHOSHDASTIDAR A, MAHULI S, AGNIHOTRI R, FAN L S. Selenium capture using sorbent powders: Mechanism of sorption by hydrated lime[J]. Environ Sci Technol, 1996,30(2):447-452.
AGNIHOTRI R, CHAUK S, MAHULI S, FAN L S. Selenium removal using Ca-based sorbents: Reaction kinetics[J]. Environ Sci Technol, 1998,32(12):1841-1846.
LOU Y, FAN Y M, PANG C K, ZHUO Y Q. The promotion by steam on cao adsorbing seo2 at medium temperature[M]. 2018 4th Int Conf Environ Renewable Energy, 2018.
XU S R, SHUAI Q, HUANG Y J, BAO Z Y, HU S H. Se capture by a CaO-ZnO composite sorbent during the combustion of se-rich stone coal[J]. Energy Fuels, 2013,27(11):6880-6886.
YU M Z, HUANG Y J, XIA W Q, ZHU Z C, FAN C H, LIU C Q, DONG L, XU L G, LIU L Q, ZHA J R, WANG X Y. PbCl2 Capture by kaolin and metakaolin under different influencing factors of thermal treatment[J]. Energy Fuels, 2020,34(2):2284-2292.
WANG X Y, HUANG Y J, ZHONG Z P, PAN Z G, LIU C Q. Theoretical investigation of cadmium vapor adsorption on kaolinite surfaces with DFT calculations[J]. Fuel, 2016,166:333-339.
WANG X Y, HUANG Y J, PAN Z G, WANG Y X, LIU C Q. Theoretical investigation of lead vapor adsorption on kaolinite surfaces with DFT calculations[J]. J Hazard Mater, 2015,295:43-54.
WANG X Y, CHEN M, LIU C Q, BU C S, ZHANG J B, ZHAO C W, HUANG Y J. Typical gaseous semi-volatile metals adsorption by meta-kaolinite: a DFT study[J]. Int J Environ Res Public Health, 2018,15(10)14.
WESER U, SOKOLOWSKI G, PILZ W. Reaction of selenite with biochemically active thiols-x-ray photoelectron spectroscopic study[J]. J Electron Spectrosc Relat Phenom, 1977,10(4):429-439.
Qianqian Zhong , Yucui Hao , Guotao Yu , Lijuan Zhao , Jingfu Wang , Jian Liu , Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013
Xiaosong PU , Hangkai WU , Taohong LI , Huijuan LI , Shouqing LIU , Yuanbo HUANG , Xuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030
Xue Liu , Lipeng Wang , Luling Li , Kai Wang , Wenju Liu , Biao Hu , Daofan Cao , Fenghao Jiang , Junguo Li , Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
Dan Li , Hui Xin , Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046
Xuejie Wang , Guoqing Cui , Congkai Wang , Yang Yang , Guiyuan Jiang , Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044
Youlin SI , Shuquan SUN , Junsong YANG , Zijun BIE , Yan CHEN , Li LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081
Yanan Liu , Yufei He , Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081
Xiaoyan Wang , Chao Wang , Dongmei Dai , Yanling Geng , Hongtao Gao . Design of Ideological and Political Education for the Experiment on Calcium Content Determination in Calcium Supplements. University Chemistry, 2024, 39(2): 162-167. doi: 10.3866/PKU.DXHX202307074
Fei Liu , Dong-Yang Zhao , Kai Sun , Ting-Ting Yu , Xin Wang . Comprehensive Experimental Design for Photochemical Synthesis, Analysis, and Characterization of Seleno-Containing Medium-Sized N-Heterocycles. University Chemistry, 2024, 39(3): 369-375. doi: 10.3866/PKU.DXHX202309047
Jiaxun Wu , Mingde Li , Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098
Yixuan Gao , Lingxing Zan , Wenlin Zhang , Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091
Jingke LIU , Jia CHEN , Yingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060
Ping ZHANG , Chenchen ZHAO , Xiaoyun CUI , Bing XIE , Yihan LIU , Haiyu LIN , Jiale ZHANG , Yu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014
Fang Niu , Rong Li , Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102
Jiali CHEN , Guoxiang ZHAO , Yayu YAN , Wanting XIA , Qiaohong LI , Jian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408
(a): SeO2; (b): CaCO3; (c): calcite; (d): dolomite
■ : CaO #37-1497;
●: Ca(OH)2 #44-1481;
✦: CaSeO3 #35-0884;
★: CaSeO3 #35-0885;
▲: CaCO3 #05-0586;
✦: CaSeO3 #35-0884;
★: CaSeO3 #35-0885;
■: CaO #37-1497;
●: Ca(OH)2 #44-1481;
▼: MgO #35-0884;
▲: CaCO3 #05-0586;
✦: CaSeO3 #35-0884;
★: CaSeO3 #35-0885;
■: CaO #37-1497; ●: Ca(OH)2 #44-1481; ✦: CaSeO3 #35-0884; ★: CaSeO3 #35-0885