Citation: YU Meng-zhu, WANG Hai, HUANG Ya-ji, ZHU Zhi-cheng, FAN Cong-hui, DONG Lu, CHENG Hao-qiang. Characteristics of selenium capture by typical Ca-/Mg-based sorbents[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(11): 1335-1344. shu

Characteristics of selenium capture by typical Ca-/Mg-based sorbents

  • Corresponding author: HUANG Ya-ji, heyyj@seu.edu.cn
  • Received Date: 10 September 2020
    Revised Date: 4 October 2020

    Fund Project: Natural Science Foundation of Jiangsu Province BK20181281National Key Research and Development Project 2018YFB0605102National Nature Science Foundation of China 51976036The project was supported by National Key Research and Development Project (2018YFB0605102), National Nature Science Foundation of China (51976036), and Natural Science Foundation of Jiangsu Province (BK20181281)

Figures(24)

  • The characteristics of Se capture by CaO, CaCO3, and MgO which are main components of Ca-/Mg-based mineral sorbents at 500-800 ℃ and that by calcite and dolomite were investigated, and the CaO obtained from calcine minerals were also used to capture Se. The results showed that capacity of CaO for Se capture was the highest, and the maximum value at 800 ℃ was 368 mg/g. Capacity of CaCO3 on Se adsorption at 700 ℃ was the largest and thermostability of the used CaCO3 was better. Se adsorption of Mg-based sorbents at medium temperature was obvious. The trend for Se adsorption capacity of calcite with increasing temperature was similar to that of CaCO3. Effect of calcite on Se capture was better than that of CaCO3, which was attributed to the higher specific surface area and pore volume of calcite. The ability of F-sor obtained from calcined calcite for Se capture was better than that of C-sor from calcined CaCO3 as well as that of CaO, which was likely due to higher specific surface area and pore volume of F-sor. Moreover, the used F-sor showed better thermostability at higher temperature, and the maximum adsorption capacity of F-sor was 403 mg/g.
  • 加载中
    1. [1]

      SONG B, SONG M, CHEN D D, CAO Y, MENG F Y, WEI Y X. Retention of arsenic in coal combustion flue gas at high temperature in the presence of CaO[J]. Fuel, 2020,259.  

    2. [2]

      CHENG Yun, WANG Xin-ye, Lv Wen-ting, HUANG Ya-ji, XIE Hao, GUO Ruo-jun, PIAO Gui-lin. A review on heavy and alkali metals adsorption by kaolin at high temperature[J]. Chem Ind Eng Prog, 2019,38(8):3852-3865.  

    3. [3]

      TANG Q, LIU G J, YAN Z C, SUN R Y. Distribution and fate of environmentally sensitive elements (arsenic, mercury, stibium and selenium) in coal-fired power plants at Huainan, Anhui, China[J]. Fuel, 2012,95(1):334-339.  

    4. [4]

      ITSKOS G, KOUKOUZAS N, VASILATOS C, MEGREMI I, MOUTSATSOU A. Comparative uptake study of toxic elements from aqueous media by the different particle-size-fractions of fly ash[J]. J Hazard Mater, 2010,183(1/3):787-792.  

    5. [5]

      LIU Rui-qing, WANG Jun-wei. Influence of minerals and mineral ions on selenium release behaviors during coal pyrolysis[J]. Environ Chem, 2013(1):100-105.  

    6. [6]

      WANG L, JU Y W, LIU G J, CHOU C L, ZHENG L G, QI C C. Selenium in Chinese coals: distribution, occurrence, and health impact[J]. Environ Earth Sci, 2010,60(8):1641-1651.  

    7. [7]

      HOPKINS W A, MENDONCA M T, ROWE C L, CONGDON J D. Elevated trace element concentrations in southern toads, Bufo terrestris, exposed to coal combustion waste[J]. Arch Environ Contam Toxicol, 1998,35(2):325-329.  

    8. [8]

      ZHONG L P, CAO Y, LI W Y, XIE K C, PAN W P. Selenium speciation in flue desulfurization residues[J]. J Environ Sci, 2011,23(1):171-176.  

    9. [9]

      XIONG Quan-jun, QIU Jian-rong, XU Chao-fen, WANG Quan-hai, LIU Hao, CHEN Yong-li, XU Zhi-ying. Study on the volatilization behavior of se under oxygen-combustion atmosphere[J]. J Eng Thermophys, 2006,27(z2):195-198.  

    10. [10]

      FRANDSEN F, DAMJOHANSEN K, RASMUSSEN P. Trace-elements from combustion and gasification of coal-an equilibrium approach[J]. Prog Energy Combust Sci, 1994,20(2):115-138.  

    11. [11]

      FAN Ya M, ZHUO Y Q, LI L L. SeO2 adsorption on CaO surface: DFT and experimental study on the adsorption of multiple SeO2 molecules[J]. Appl Surf Sci, 2017,420:465-471.  

    12. [12]

      HU J J, SUN Q, HE H. Thermal effects from the release of selenium from a coal combustion during high-temperature processing: a review[J]. Environ Sci Pollut Res, 2018,25(14):13470-13478.  

    13. [13]

      SENIOR C, VAN OTTEN B, WENDT JOL, SAROFIM A. Modeling the behavior of selenium in pulverized-coal combustion systems[J]. Combust Flame, 2010,157(11):2095-2105.  

    14. [14]

      DIAZ-SOMOANO M, MARTINEZ-TARAZONA M R. Retention of arsenic and selenium compounds using limestone in a coal gasification flue gas[J]. Environ Sci Technol, 2004,38(3):899-903.  

    15. [15]

      ROY B, BHATTACHARYA S. Release behavior of Hg, Se, Cr and As during oxy-fuel combustion using Loy Yang brown coal in a bench-scale fluidized bed unit[J]. Powder Technol, 2016,302:328-332.  

    16. [16]

      ZENG T F, SAROFIM A F, SENIOR C L. Vaporization of arsenic, selenium and antimony during coal combustion[J]. Combust. Flame, 2001,126(3):1714-1724.  

    17. [17]

      JAMES D W, KRISHNAMOORTHY G, BENSON S A, SEAMES W S. Modeling trace element partitioning during coal combustion[J]. Fuel Process Technol, 2014,126:284-297.  

    18. [18]

      HE Xuan-ming, LI Yao-la, HAN Jun, HUANG Li. Distribution of Se and Cd during coal coking[J]. J Fuel Chem Technol, 2010,38(5):528-533.  

    19. [19]

      LIU S Q, WANG Y T, YU L, OAKEY J. Volatilization of mercury, arsenic and selenium during underground coal gasification[J]. Fuel, 2006,85(10/11):1550-1558.  

    20. [20]

      FURUZONO T, NAKAJIMA T, FUJISHIMA H, TAKANASHI H, OHKI A. Behavior of selenium in the flue gas of pulverized coal combustion system: Influence of kind of coal and combustion conditions[J]. Fuel Process Technol, 2017,167:388-394.  

    21. [21]

      ZOU R J, ZHANG Hao Y, LUO G Q, FANG C, SHI M T, HU H Y, LI X, YAO H. Selenium migration behaviors in wet flue gas desulfurization slurry and an in-situ treatment approach[J]. Chem Eng J, 2020,3858.  

    22. [22]

      WANG J W, ZHANG Y S, WANG T, XU H, PAN W P. Effect of modified fly ash injection on As, Se, and Pb emissions in coal-fired power plant[J]. Chem Eng J, 2020,38010.  

    23. [23]

      LI Y Z, TONG H L, ZHUO Y Q, CHEN C H, XU X C. Simultaneous removal of SO2 and trace SeO2 from flue gas: Effect of product layer on mass transfer[J]. Environ Sci Technol, 2006,40(13):4306-4311.  

    24. [24]

      LI Y Z, TONG H L, ZHUO Y Q, WANG S J, XU X C. Simultaneous removal of SO2 and trace SeO2 from flue gas: Effect of SO2 on selenium capture and kinetics study[J]. Environ Sci Technol, 2006,40(24):7919-7924.  

    25. [25]

      SENIOR C L, TYREE C A, MEEKS N D, ACHARYA C, MCCAIN J D, CUSHING K M. Selenium partitioning and removal across a wet FGD scrubber at a coal-fired power plant[J]. Environ Sci Technol, 2015,49(24):14376-14382.  

    26. [26]

      LI Yu-zhong, TONG Hui-ling, ZHUO Yu-qun, CHEN Chang-he, XU Xu-chang. Experimental study on simultaneous removal of sulfur and trace selenium element[J]. J Eng Thermophys, 2006,27(z2):223-226.  

    27. [27]

      SONG Hua, WANG Xue-qin, ZHAO Xian-jun, ZHANG Wen-chao, LV Bao-hang, LIU Yan-xiu. Progress in wet flue gas desulfurization technology[J]. Chem Ind Eng, 2009,26(5):455-459.  

    28. [28]

      LI Yu-zhong, TONG Hui-ling, LI Yan, ZHUO Yu-qun, XU Xu-chang. Effect of CO2 on trace selenium adsorption by CaO from flue gas[J]. J Tsinghua University(Sci. Technol.), 2007,47(5):699-702.  

    29. [29]

      GHOSHDASTIDAR A, MAHULI S, AGNIHOTRI R, FAN L S. Selenium capture using sorbent powders: Mechanism of sorption by hydrated lime[J]. Environ Sci Technol, 1996,30(2):447-452.  

    30. [30]

      AGNIHOTRI R, CHAUK S, MAHULI S, FAN L S. Selenium removal using Ca-based sorbents: Reaction kinetics[J]. Environ Sci Technol, 1998,32(12):1841-1846.  

    31. [31]

      LOU Y, FAN Y M, PANG C K, ZHUO Y Q. The promotion by steam on cao adsorbing seo2 at medium temperature[M]. 2018 4th Int Conf Environ Renewable Energy, 2018.

    32. [32]

      XU S R, SHUAI Q, HUANG Y J, BAO Z Y, HU S H. Se capture by a CaO-ZnO composite sorbent during the combustion of se-rich stone coal[J]. Energy Fuels, 2013,27(11):6880-6886.  

    33. [33]

      YU M Z, HUANG Y J, XIA W Q, ZHU Z C, FAN C H, LIU C Q, DONG L, XU L G, LIU L Q, ZHA J R, WANG X Y. PbCl2 Capture by kaolin and metakaolin under different influencing factors of thermal treatment[J]. Energy Fuels, 2020,34(2):2284-2292.

    34. [34]

      WANG X Y, HUANG Y J, ZHONG Z P, PAN Z G, LIU C Q. Theoretical investigation of cadmium vapor adsorption on kaolinite surfaces with DFT calculations[J]. Fuel, 2016,166:333-339.  

    35. [35]

      WANG X Y, HUANG Y J, PAN Z G, WANG Y X, LIU C Q. Theoretical investigation of lead vapor adsorption on kaolinite surfaces with DFT calculations[J]. J Hazard Mater, 2015,295:43-54.  

    36. [36]

      WANG X Y, CHEN M, LIU C Q, BU C S, ZHANG J B, ZHAO C W, HUANG Y J. Typical gaseous semi-volatile metals adsorption by meta-kaolinite: a DFT study[J]. Int J Environ Res Public Health, 2018,15(10)14.  

    37. [37]

      WESER U, SOKOLOWSKI G, PILZ W. Reaction of selenite with biochemically active thiols-x-ray photoelectron spectroscopic study[J]. J Electron Spectrosc Relat Phenom, 1977,10(4):429-439.  

  • 加载中
    1. [1]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

    2. [2]

      Jianan Zhang Mengzhen Xu Jiamin Liu Yufei He . 面向“双碳”目标的脱氯吸附剂开发研究型综合实验设计. University Chemistry, 2025, 40(6): 248-255. doi: 10.12461/PKU.DXHX202408068

    3. [3]

      Ying Liu Jia Ji Yinling Hou Lilan Guo Xuan Lv . Selenium’s Journey. University Chemistry, 2025, 40(7): 218-224. doi: 10.12461/PKU.DXHX202409046

    4. [4]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    5. [5]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    6. [6]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    7. [7]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    8. [8]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    9. [9]

      Huiwei DingBo PengZhihao WangQiaofeng Han . Advances in Metal or Nonmetal Modification of Bismuth-Based Photocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2305048-0. doi: 10.3866/PKU.WHXB202305048

    10. [10]

      Jingshuo ZhangYue ZhaiZiyun ZhaoJiaxing HeWei WeiJing XiaoShichao WuQuan-Hong Yang . Research Progress of Functional Binders in Silicon-Based Anodes for Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306006-0. doi: 10.3866/PKU.WHXB202306006

    11. [11]

      Yushan CaiFang-Xing Xiao . Revisiting MXenes-based Photocatalysis Landscape: Progress, Challenges, and Future Perspectives. Acta Physico-Chimica Sinica, 2024, 40(8): 2306048-0. doi: 10.3866/PKU.WHXB202306048

    12. [12]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

    13. [13]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    14. [14]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    15. [15]

      Xiaoyan Wang Chao Wang Dongmei Dai Yanling Geng Hongtao Gao . Design of Ideological and Political Education for the Experiment on Calcium Content Determination in Calcium Supplements. University Chemistry, 2024, 39(2): 162-167. doi: 10.3866/PKU.DXHX202307074

    16. [16]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    17. [17]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    18. [18]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    19. [19]

      Fei Liu Dong-Yang Zhao Kai Sun Ting-Ting Yu Xin Wang . Comprehensive Experimental Design for Photochemical Synthesis, Analysis, and Characterization of Seleno-Containing Medium-Sized N-Heterocycles. University Chemistry, 2024, 39(3): 369-375. doi: 10.3866/PKU.DXHX202309047

    20. [20]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

Metrics
  • PDF Downloads(3)
  • Abstract views(466)
  • HTML views(76)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return