Citation: SHI Heng, LUO Jing, PU Yan-feng, WANG Feng, LI Feng, CHEN Zhi-wen, SONG Quan-bin, XIAO Fu-kui, ZHAO Ning. One-pot synthesis of CexZr1-xO2 solid solution catalysts for the splitting of CO2 to CO via thermochemical cycling[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(11): 1386-1393. shu

One-pot synthesis of CexZr1-xO2 solid solution catalysts for the splitting of CO2 to CO via thermochemical cycling

  • Corresponding author: XIAO Fu-kui, xiaofk@sxicc.ac.cn ZHAO Ning, zhaoning@sxicc.ac.cn
  • Received Date: 25 July 2019
    Revised Date: 8 October 2019

    Fund Project: the Natural Science Foundation of Shanxi Province, China 201801D121070the State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University 2018-K11the Independent Research Project of the State Key Laboratory of Coal Conversion 2018BWZ002The project was supported by the Natural Science Foundation of Shanxi Province, China (201801D121070), the State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University (2018-K11), the Science Foundation for Young Scientists of Shanxi Province, China (201701D221052), the National Natural Science Foundation of China (21776294, 21802158) and the Independent Research Project of the State Key Laboratory of Coal Conversion (2018BWZ002)the National Natural Science Foundation of China 21776294the National Natural Science Foundation of China 21802158the Science Foundation for Young Scientists of Shanxi Province, China 201701D221052

Figures(10)

  • A series of CeO2-ZrO2 solid solutions with different Ce/Zr molar ratios were synthesized by one-pot evaporation-induced self-assembly (EISA) method and characterized by XRD, Raman spectroscopy, H2-TPR, XPS, SEM and N2 sorption. The catalytic activity of CeO2-ZrO2 solid solutions in the thermochemical splitting of CO2 to CO were investigated by thermogravimetric analysis. The results reveal that with the increase of Ce/Zr molar ratio, the catalytic activity of CeO2-ZrO2 in CO2 splitting increases first and then decreases. The Ce0.5Zr0.5O2 solution with a Ce/Zr molar ratio of 1 exhibits high activity in CO2 splitting, owing to its abundant lattice defects and oxygen vacancies which can promote the oxygen migration. In contrast, the Ce0.75Zr0.25O2 solution with a Ce/Zr molar ratio of 3 shows the best cyclic stability, due to its relatively stable number of oxygen vacancies. Sintering of particles was observed after the cycling reaction, accompanying with the phase separation in the Zr-rich solid solutions, which may influence the catalytic performance of CeO2-ZrO2 solid solutions in the CO2 splitting.
  • 加载中
    1. [1]

      CHUEH W C, STEINFELD A. High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria[J]. Science, 2010,330(6012):1797-1801. doi: 10.1126/science.1197834

    2. [2]

      MARXER D, FURLER P, TAKACS M, STEINFELD A. Solar thermochemical splitting of CO2 into separate streams of CO and O2 with high selectivity, stability, conversion, and efficiency[J]. Energy Environ Sci, 2017,10(5):1142-1149. doi: 10.1039/C6EE03776C

    3. [3]

      CHUEH W C, HAILE S M. A thermochemical study of ceria:Exploiting an old material for new modes of energy conversion and CO2 mitigation[J]. Philos Trans A:Math Phys Eng Sci, 2010,368(1923):3269-3294. doi: 10.1098/rsta.2010.0114

    4. [4]

      FURLER P, SCHEFFE J R, STEINFELD A. Syngas production by simultaneous splitting of H2O and CO2 via ceria redox reactions in a high-temperature solar reactor[J]. Energy Environ Sci, 2012,5(3):6098-6103. doi: 10.1039/C1EE02620H

    5. [5]

      SCHEFFE J R, STEINFELD A. Oxygen exchange materials for solar thermochemical splitting of H2O and CO2:A review[J]. Mater Today, 2014,17(7):341-348. doi: 10.1016/j.mattod.2014.04.025

    6. [6]

      KANG M, WU X, ZHANG J, ZHAO N, WEI W, SUN Y. Enhanced thermochemical CO2 splitting over Mg-and Ca-doped ceria/zirconia solid solutions[J]. RSC Adv, 2014,4(11):5583-5590. doi: 10.1039/c3ra45595e

    7. [7]

      STAMATIOU A, LOUTZENHISER P G, STEINFELD A. Solar syngas production via H2O/CO2-splitting thermochemical cycles with Zn/ZnO and FeO/Fe3O4 redox reactions†[J]. Chem Mater, 2010,22(3):851-859. doi: 10.1021/cm9016529

    8. [8]

      ABANADES S, CHAMBON M. CO2 dissociation and upgrading from two-step solar thermochemical processes based on ZnO/Zn and SnO2/SnO redox pairs[J]. Energy Fuels, 2010,24(12):6667-6674. doi: 10.1021/ef101092u

    9. [9]

      DEY S, NAIDU B S, GOVINDARAJ A, RAO C N R. Noteworthy performance of La1-xCaxMnO3 perovskites in generating H2 and CO by the thermochemical splitting of H2O and CO2[J]. Phys Chem Chem Phys, 2015,17(1):122-125.  

    10. [10]

      MCDANIEL A H, MILLER E C, ARIFIN D, AMBROSINI A, COKER E N, O'HAYRE R, CHUEH W C, TONG J. Sr- and Mn- doped LaAlO3-δ for solar thermochemical H2 and CO production[J]. Energy Environ Sci, 2013,6(8):2424-2428. doi: 10.1039/c3ee41372a

    11. [11]

      GAL A L, ABANADES S, FLAMANT G. CO2 and H2O splitting for thermochemical production of solar fuels using nonstoichiometric ceria and ceria/zirconia solid solutions[J]. Energy Fuels, 2011,25(10):4836-4845. doi: 10.1021/ef200972r

    12. [12]

      ARIFIN D, WEIMER A W. Kinetics and mechanism of solar-thermochemical H2 and CO production by oxidation of reduced CeO2[J]. Sol Energy, 2018,160:178-185. doi: 10.1016/j.solener.2017.11.075

    13. [13]

      ZHAO B, HUANG C, RAN R, WU X, DUAN W. Two-step thermochemical looping using modified ceria-based materials for splitting CO2[J]. J Mater Sci, 2016,51(5):2299-2306. doi: 10.1007/s10853-015-9534-7

    14. [14]

      ABANADES S, LEGAL A, CORDIER A, PERAUDEAU G, FLAMANT G, JULBE A. Investigation of reactive cerium-based oxides for H2 production by thermochemical two-step water-splitting[J]. J Mater Sci, 2010,45(15):4163-4173. doi: 10.1007/s10853-010-4506-4

    15. [15]

      JIANG Q, ZHOU G, JIANG Z, LI C. Thermochemical CO2 splitting reaction with CexM1-xO2-δ (M=Ti4+, Sn4+, Hf4+, Zr4+, La3+, Y3+ and Sm3+) solid solutions[J]. Sol Energy, 2014,99(99):55-66. doi: 10.1016/j.solener.2013.10.021

    16. [16]

      JACOT R, MORE R, MICHALSKY R, STEINFELD A, PATZKE G R. Trends in the phase stability and thermochemical oxygen exchange of ceria doped with potentially tetravalent metals[J]. J Mater Chem A, 2017,5(37):19901-19913. doi: 10.1039/C7TA04063F

    17. [17]

      ABANADES S, GAL A L. CO2 splitting by thermo-chemical looping based on ZrxCe1-xO2 oxygen carriers for synthetic fuel generation[J]. Fuel, 2012,102(6):180-186. doi: 10.1016/j.fuel.2012.06.068

    18. [18]

      PETKOVICH N D, RUDISILL S G, VENSTROM L J, BOMAN D B, DAVIDSON J H, STEIN A. Control of heterogeneity in nanostructured Ce1-xZrxO2 binary oxides for enhanced thermal stability and water splitting activity[J]. J Phys Chem C, 2011,115(43):21022-21033. doi: 10.1021/jp2071315

    19. [19]

      SHI H, LUO J, WANG F, PU Y, YANG J, XIAO F, ZHAO N, SONG Q, CHEN Z. Synthesis of CeO2-ZrO2 solid solutions for thermochemical CO2 splitting[J]. Energy Technol-Ger, 2019,7(4)1800890. doi: 10.1002/ente.201800890

    20. [20]

      ALIFANTI M, BAPS B, BLANGENOIS N, NAUD J, GRANGE P, DELMON B. Characterization of CeO2-ZrO2 mixed oxides. Comparison of the citrate and Sol-Gel preparation methods[J]. Chem Mater, 2003,15(2):395-403.

    21. [21]

      KUHN M, BISHOP S R, RUPP J L M, TULLER H L. Structural characterization and oxygen nonstoichiometry of ceria-zirconia (Ce1-xZrxO2-δ) solid solutions[J]. Acta Mater, 2013,61(11):4277-4288. doi: 10.1016/j.actamat.2013.04.001

    22. [22]

      L PEZ E F, ESCRIBANO V S, PANIZZA M, CARNASCIALI M M, BUSCA G. Vibrational and electronic spectroscopic properties of zirconia powders[J]. J Mater Chem, 2001,11(11):1891-1897.  

    23. [23]

      REDDY B M, KHAN A. Structural characterization of CeO2-TiO2 And V2O5/CeO2-TiO2 catalysts by raman and XPS techniques[J]. J Phys Chem B, 2003,107(22):5162-5167. doi: 10.1021/jp0344601

    24. [24]

      PRUSTY D, PATHAK A, MUKHERJEE M, MUKHERJEE B, CHOWDHURY A. TEM and XPS studies on the faceted nanocrystals of Ce0.8Zr0.2O2[J]. Mater Charact, 2015,100:31-35. doi: 10.1016/j.matchar.2014.12.009

    25. [25]

      MOULDER J F, STICKLE W F, SOBOL P E, BOMBEN K D, CHASTAIN J, KING R C. Handbook of X-Ray Photoelectron Spectroscop[M]. Perkin-Elmer Corp:Eden Prairie, MN, 1979.

    26. [26]

      SHINDE S S, RAJPURE K Y. X-ray photoelectron spectroscopic study of catalyst based zinc oxide thin films[J]. J Alloy Compd, 2011,509(13):4603-4607. doi: 10.1016/j.jallcom.2011.01.117

    27. [27]

      TROVARELLI A, ZAMAR F, LLORCA J, LEITENBURG C D, DOLCETTI G, KISS J T. Nanophase fluorite-structured CeO2-ZrO2 catalysts prepared by high-energy mechanical milling[J]. J Catal, 1997,169(2):490-502. doi: 10.1006/jcat.1997.1705

    28. [28]

      FALLY F, PERRICHON V, VIDAL H, KASPAR J, BLANCO G, PINTADO J M, BERNAL S, COLON G, DATURI M, LAVALLEY J C. Modification of the oxygen storage capacity of CeO2 -ZrO2 mixed oxides after redox cycling aging[J]. Catal Today, 2000,59(3):373-386.  

  • 加载中
    1. [1]

      Jingyi XieQianxi LüWeizhen QiaoChenyu BuYusheng ZhangXuejun ZhaiRenqing LüYongming ChaiBin Dong . Enhancing Cobalt―Oxygen Bond to Stabilize Defective Co2MnO4 in Acidic Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305021-0. doi: 10.3866/PKU.WHXB202305021

    2. [2]

      Qin ChengMing HuangQingqing YeBangwei DengFan Dong . Indium-based electrocatalysts for CO2 reduction to C1 products. Chinese Chemical Letters, 2024, 35(6): 109112-. doi: 10.1016/j.cclet.2023.109112

    3. [3]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012

    4. [4]

      Dong XiangKunzhen LiKanghua MiaoRan LongYujie XiongXiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027

    5. [5]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    6. [6]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    7. [7]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    8. [8]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    9. [9]

      Hui BianXinyi YuanNan ZhangZhuo XuJuhong LianRuibin JiangJunqing YanDeng LiShengzhong (Frank) Liu . Correlating vacancy-defect density with CO2 activation for promoted CO2 methanation over CsPbBr3 photocatalyst. Chinese Chemical Letters, 2025, 36(7): 111034-. doi: 10.1016/j.cclet.2025.111034

    10. [10]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

    11. [11]

      Yongqing XuYuyao YangMengna WuXiaoxiao YangXuan BieShiyu ZhangQinghai LiYanguo ZhangChenwei ZhangRobert E. PrzekopBogna SztorchDariusz BrzakalskiHui Zhou . Review on Using Molybdenum Carbides for the Thermal Catalysis of CO2 Hydrogenation to Produce High-Value-Added Chemicals and Fuels. Acta Physico-Chimica Sinica, 2024, 40(4): 2304003-0. doi: 10.3866/PKU.WHXB202304003

    12. [12]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    13. [13]

      Linlu BaiWensen LiXiaoyu ChuHaochun YinYang QuEkaterina KozlovaZhao-Di YangLiqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931

    14. [14]

      Xiang-Da ZhangJian-Mei HuangXiaorong ZhuChang LiuYue YinJia-Yi HuangYafei LiZhi-Yuan Gu . Auto-tandem CO2 reduction by reconstructed Cu imidazole framework isomers: Unveiling pristine MOF-mediated CO2 activation. Chinese Chemical Letters, 2025, 36(5): 109937-. doi: 10.1016/j.cclet.2024.109937

    15. [15]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    16. [16]

      Maomao Liu Guizeng Liang Ningce Zhang Tao Li Lipeng Diao Ping Lu Xiaoliang Zhao Daohao Li Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, 2024, 43(8): 100359-100359. doi: 10.1016/j.cjsc.2024.100359

    17. [17]

      Yongheng Ren Yang Chen Hongwei Chen Lu Zhang Jiangfeng Yang Qi Shi Lin-Bing Sun Jinping Li Libo Li . Electrostatically driven kinetic Inverse CO2/C2H2 separation in LTA-type zeolites. Chinese Journal of Structural Chemistry, 2024, 43(10): 100394-100394. doi: 10.1016/j.cjsc.2024.100394

    18. [18]

      Huirong Chen Yingzhi He Yan Han Jianbo Hu Jiantang Li Yunjia Jiang Basem Keshta Lingyao Wang Yuanbin Zhang . A new SIFSIX anion pillared cage MOF with crs topological structure for efficient C2H2/CO2 separation. Chinese Journal of Structural Chemistry, 2025, 44(2): 100508-100508. doi: 10.1016/j.cjsc.2024.100508

    19. [19]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    20. [20]

      Tianbo JiaLili WangZhouhao ZhuBaikang ZhuYingtang ZhouGuoxing ZhuMingshan ZhuHengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692

Metrics
  • PDF Downloads(10)
  • Abstract views(1422)
  • HTML views(318)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return