One-pot synthesis of CexZr1-xO2 solid solution catalysts for the splitting of CO2 to CO via thermochemical cycling
- Corresponding author: XIAO Fu-kui, xiaofk@sxicc.ac.cn ZHAO Ning, zhaoning@sxicc.ac.cn
Citation:
SHI Heng, LUO Jing, PU Yan-feng, WANG Feng, LI Feng, CHEN Zhi-wen, SONG Quan-bin, XIAO Fu-kui, ZHAO Ning. One-pot synthesis of CexZr1-xO2 solid solution catalysts for the splitting of CO2 to CO via thermochemical cycling[J]. Journal of Fuel Chemistry and Technology,
;2019, 47(11): 1386-1393.
CHUEH W C, STEINFELD A. High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria[J]. Science, 2010,330(6012):1797-1801. doi: 10.1126/science.1197834
MARXER D, FURLER P, TAKACS M, STEINFELD A. Solar thermochemical splitting of CO2 into separate streams of CO and O2 with high selectivity, stability, conversion, and efficiency[J]. Energy Environ Sci, 2017,10(5):1142-1149. doi: 10.1039/C6EE03776C
CHUEH W C, HAILE S M. A thermochemical study of ceria:Exploiting an old material for new modes of energy conversion and CO2 mitigation[J]. Philos Trans A:Math Phys Eng Sci, 2010,368(1923):3269-3294. doi: 10.1098/rsta.2010.0114
FURLER P, SCHEFFE J R, STEINFELD A. Syngas production by simultaneous splitting of H2O and CO2 via ceria redox reactions in a high-temperature solar reactor[J]. Energy Environ Sci, 2012,5(3):6098-6103. doi: 10.1039/C1EE02620H
SCHEFFE J R, STEINFELD A. Oxygen exchange materials for solar thermochemical splitting of H2O and CO2:A review[J]. Mater Today, 2014,17(7):341-348. doi: 10.1016/j.mattod.2014.04.025
KANG M, WU X, ZHANG J, ZHAO N, WEI W, SUN Y. Enhanced thermochemical CO2 splitting over Mg-and Ca-doped ceria/zirconia solid solutions[J]. RSC Adv, 2014,4(11):5583-5590. doi: 10.1039/c3ra45595e
STAMATIOU A, LOUTZENHISER P G, STEINFELD A. Solar syngas production via H2O/CO2-splitting thermochemical cycles with Zn/ZnO and FeO/Fe3O4 redox reactions†[J]. Chem Mater, 2010,22(3):851-859. doi: 10.1021/cm9016529
ABANADES S, CHAMBON M. CO2 dissociation and upgrading from two-step solar thermochemical processes based on ZnO/Zn and SnO2/SnO redox pairs[J]. Energy Fuels, 2010,24(12):6667-6674. doi: 10.1021/ef101092u
DEY S, NAIDU B S, GOVINDARAJ A, RAO C N R. Noteworthy performance of La1-xCaxMnO3 perovskites in generating H2 and CO by the thermochemical splitting of H2O and CO2[J]. Phys Chem Chem Phys, 2015,17(1):122-125.
MCDANIEL A H, MILLER E C, ARIFIN D, AMBROSINI A, COKER E N, O'HAYRE R, CHUEH W C, TONG J. Sr- and Mn- doped LaAlO3-δ for solar thermochemical H2 and CO production[J]. Energy Environ Sci, 2013,6(8):2424-2428. doi: 10.1039/c3ee41372a
GAL A L, ABANADES S, FLAMANT G. CO2 and H2O splitting for thermochemical production of solar fuels using nonstoichiometric ceria and ceria/zirconia solid solutions[J]. Energy Fuels, 2011,25(10):4836-4845. doi: 10.1021/ef200972r
ARIFIN D, WEIMER A W. Kinetics and mechanism of solar-thermochemical H2 and CO production by oxidation of reduced CeO2[J]. Sol Energy, 2018,160:178-185. doi: 10.1016/j.solener.2017.11.075
ZHAO B, HUANG C, RAN R, WU X, DUAN W. Two-step thermochemical looping using modified ceria-based materials for splitting CO2[J]. J Mater Sci, 2016,51(5):2299-2306. doi: 10.1007/s10853-015-9534-7
ABANADES S, LEGAL A, CORDIER A, PERAUDEAU G, FLAMANT G, JULBE A. Investigation of reactive cerium-based oxides for H2 production by thermochemical two-step water-splitting[J]. J Mater Sci, 2010,45(15):4163-4173. doi: 10.1007/s10853-010-4506-4
JIANG Q, ZHOU G, JIANG Z, LI C. Thermochemical CO2 splitting reaction with CexM1-xO2-δ (M=Ti4+, Sn4+, Hf4+, Zr4+, La3+, Y3+ and Sm3+) solid solutions[J]. Sol Energy, 2014,99(99):55-66. doi: 10.1016/j.solener.2013.10.021
JACOT R, MORE R, MICHALSKY R, STEINFELD A, PATZKE G R. Trends in the phase stability and thermochemical oxygen exchange of ceria doped with potentially tetravalent metals[J]. J Mater Chem A, 2017,5(37):19901-19913. doi: 10.1039/C7TA04063F
ABANADES S, GAL A L. CO2 splitting by thermo-chemical looping based on ZrxCe1-xO2 oxygen carriers for synthetic fuel generation[J]. Fuel, 2012,102(6):180-186. doi: 10.1016/j.fuel.2012.06.068
PETKOVICH N D, RUDISILL S G, VENSTROM L J, BOMAN D B, DAVIDSON J H, STEIN A. Control of heterogeneity in nanostructured Ce1-xZrxO2 binary oxides for enhanced thermal stability and water splitting activity[J]. J Phys Chem C, 2011,115(43):21022-21033. doi: 10.1021/jp2071315
SHI H, LUO J, WANG F, PU Y, YANG J, XIAO F, ZHAO N, SONG Q, CHEN Z. Synthesis of CeO2-ZrO2 solid solutions for thermochemical CO2 splitting[J]. Energy Technol-Ger, 2019,7(4)1800890. doi: 10.1002/ente.201800890
ALIFANTI M, BAPS B, BLANGENOIS N, NAUD J, GRANGE P, DELMON B. Characterization of CeO2-ZrO2 mixed oxides. Comparison of the citrate and Sol-Gel preparation methods[J]. Chem Mater, 2003,15(2):395-403.
KUHN M, BISHOP S R, RUPP J L M, TULLER H L. Structural characterization and oxygen nonstoichiometry of ceria-zirconia (Ce1-xZrxO2-δ) solid solutions[J]. Acta Mater, 2013,61(11):4277-4288. doi: 10.1016/j.actamat.2013.04.001
L PEZ E F, ESCRIBANO V S, PANIZZA M, CARNASCIALI M M, BUSCA G. Vibrational and electronic spectroscopic properties of zirconia powders[J]. J Mater Chem, 2001,11(11):1891-1897.
REDDY B M, KHAN A. Structural characterization of CeO2-TiO2 And V2O5/CeO2-TiO2 catalysts by raman and XPS techniques[J]. J Phys Chem B, 2003,107(22):5162-5167. doi: 10.1021/jp0344601
PRUSTY D, PATHAK A, MUKHERJEE M, MUKHERJEE B, CHOWDHURY A. TEM and XPS studies on the faceted nanocrystals of Ce0.8Zr0.2O2[J]. Mater Charact, 2015,100:31-35. doi: 10.1016/j.matchar.2014.12.009
MOULDER J F, STICKLE W F, SOBOL P E, BOMBEN K D, CHASTAIN J, KING R C. Handbook of X-Ray Photoelectron Spectroscop[M]. Perkin-Elmer Corp:Eden Prairie, MN, 1979.
SHINDE S S, RAJPURE K Y. X-ray photoelectron spectroscopic study of catalyst based zinc oxide thin films[J]. J Alloy Compd, 2011,509(13):4603-4607. doi: 10.1016/j.jallcom.2011.01.117
TROVARELLI A, ZAMAR F, LLORCA J, LEITENBURG C D, DOLCETTI G, KISS J T. Nanophase fluorite-structured CeO2-ZrO2 catalysts prepared by high-energy mechanical milling[J]. J Catal, 1997,169(2):490-502. doi: 10.1006/jcat.1997.1705
FALLY F, PERRICHON V, VIDAL H, KASPAR J, BLANCO G, PINTADO J M, BERNAL S, COLON G, DATURI M, LAVALLEY J C. Modification of the oxygen storage capacity of CeO2 -ZrO2 mixed oxides after redox cycling aging[J]. Catal Today, 2000,59(3):373-386.
Qin Cheng , Ming Huang , Qingqing Ye , Bangwei Deng , Fan Dong . Indium-based electrocatalysts for CO2 reduction to C1 products. Chinese Chemical Letters, 2024, 35(6): 109112-. doi: 10.1016/j.cclet.2023.109112
Xue Dong , Xiaofu Sun , Shuaiqiang Jia , Shitao Han , Dawei Zhou , Ting Yao , Min Wang , Minghui Fang , Haihong Wu , Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012
Hong Dong , Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307
Ping Wang , Tianbao Zhang , Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328
Muhammad Humayun , Mohamed Bououdina , Abbas Khan , Sajjad Ali , Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193
Zixuan Zhu , Xianjin Shi , Yongfang Rao , Yu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954
Qinjin DAI , Shan FAN , Pengyang FAN , Xiaoying ZHENG , Wei DONG , Mengxue WANG , Yong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
Linlu Bai , Wensen Li , Xiaoyu Chu , Haochun Yin , Yang Qu , Ekaterina Kozlova , Zhao-Di Yang , Liqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931
Xiang-Da Zhang , Jian-Mei Huang , Xiaorong Zhu , Chang Liu , Yue Yin , Jia-Yi Huang , Yafei Li , Zhi-Yuan Gu . Auto-tandem CO2 reduction by reconstructed Cu imidazole framework isomers: Unveiling pristine MOF-mediated CO2 activation. Chinese Chemical Letters, 2025, 36(5): 109937-. doi: 10.1016/j.cclet.2024.109937
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
Maomao Liu , Guizeng Liang , Ningce Zhang , Tao Li , Lipeng Diao , Ping Lu , Xiaoliang Zhao , Daohao Li , Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, 2024, 43(8): 100359-100359. doi: 10.1016/j.cjsc.2024.100359
Yongheng Ren , Yang Chen , Hongwei Chen , Lu Zhang , Jiangfeng Yang , Qi Shi , Lin-Bing Sun , Jinping Li , Libo Li . Electrostatically driven kinetic Inverse CO2/C2H2 separation in LTA-type zeolites. Chinese Journal of Structural Chemistry, 2024, 43(10): 100394-100394. doi: 10.1016/j.cjsc.2024.100394
Huirong Chen , Yingzhi He , Yan Han , Jianbo Hu , Jiantang Li , Yunjia Jiang , Basem Keshta , Lingyao Wang , Yuanbin Zhang . A new SIFSIX anion pillared cage MOF with crs topological structure for efficient C2H2/CO2 separation. Chinese Journal of Structural Chemistry, 2025, 44(2): 100508-100508. doi: 10.1016/j.cjsc.2024.100508
Shu-Ran Xu , Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173
Tianbo Jia , Lili Wang , Zhouhao Zhu , Baikang Zhu , Yingtang Zhou , Guoxing Zhu , Mingshan Zhu , Hengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692
Yufei Jia , Fei Li , Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255
Ziruo Zhou , Wenyu Guo , Tingyu Yang , Dandan Zheng , Yuanxing Fang , Xiahui Lin , Yidong Hou , Guigang Zhang , Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
Tian-Yu Gao , Xiao-Yan Mo , Shu-Rong Zhang , Yuan-Xu Jiang , Shu-Ping Luo , Jian-Heng Ye , Da-Gang Yu . Visible-light photoredox-catalyzed carboxylation of aryl epoxides with CO2. Chinese Chemical Letters, 2024, 35(7): 109364-. doi: 10.1016/j.cclet.2023.109364
(a): Ce0.2Zr0.8O2; (b): used Ce0.2Zr0.8O2; (c): fresh Ce0.33Zr0.67O2; (d): used Ce0.33Zr0.67O2; (e): fresh Ce0.67Zr0.33O2; (f): used Ce0.67Zr0.33O2; (g): fresh Ce0.75Zr0.25O2; (h): used Ce0.75Zr0.25O2; (i): fresh Ce0.8Zr0.2O2; (j): used Ce0.8Zr0.2O2